BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28762730)

  • 1. Dual Quantification of MicroRNAs and Telomerase in Living Cells.
    Ma W; Fu P; Sun M; Xu L; Kuang H; Xu C
    J Am Chem Soc; 2017 Aug; 139(34):11752-11759. PubMed ID: 28762730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals.
    Zhang N; Ye S; Wang Z; Li R; Wang M
    ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahedron Probes for Ultrasensitive
    Guo X; Wu X; Sun M; Xu L; Kuang H; Xu C
    Anal Chem; 2020 Jan; 92(2):2310-2315. PubMed ID: 31875387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-Driven Two-Layer Core-Satellite Gold Nanostructures for Ultrasensitive MicroRNA Detection in Living Cells.
    Meng D; Ma W; Wu X; Xu C; Kuang H
    Small; 2020 Jun; 16(23):e2000003. PubMed ID: 32374494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Modal Fe
    Jiang X; Hao C; Zhang H; Wu X; Xu L; Sun M; Xu C; Kuang H
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41405-41413. PubMed ID: 32191832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence and SERS Imaging for the Simultaneous Absolute Quantification of Multiple miRNAs in Living Cells.
    Ye S; Li X; Wang M; Tang B
    Anal Chem; 2017 May; 89(9):5124-5130. PubMed ID: 28358481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles.
    Li S; Xu L; Ma W; Wu X; Sun M; Kuang H; Wang L; Kotov NA; Xu C
    J Am Chem Soc; 2016 Jan; 138(1):306-12. PubMed ID: 26691742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization.
    Zhou W; Li Q; Liu H; Yang J; Liu D
    ACS Nano; 2017 Apr; 11(4):3532-3541. PubMed ID: 28264152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Mode Au Nanoprobe Based on Surface Enhancement Raman Scattering and Colorimetry for Sensitive Determination of Telomerase Activity Both in Cell Extracts and in the Urine of Patients.
    Feng E; Zheng T; Tian Y
    ACS Sens; 2019 Jan; 4(1):211-217. PubMed ID: 30489069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering.
    Zong S; Wang Z; Chen H; Cui Y
    Small; 2013 Dec; 9(24):4215-20. PubMed ID: 23852668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart vesicle kit for in situ monitoring of intracellular telomerase activity using a telomerase-responsive probe.
    Qian R; Ding L; Yan L; Lin M; Ju H
    Anal Chem; 2014 Sep; 86(17):8642-8. PubMed ID: 25131551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages.
    Wang Z; Xue J; Bi C; Xin H; Wang Y; Cao X
    Analyst; 2019 Dec; 144(24):7250-7262. PubMed ID: 31687670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNAzyme Based Nanomachine for in Situ Detection of MicroRNA in Living Cells.
    Liu J; Cui M; Zhou H; Yang W
    ACS Sens; 2017 Dec; 2(12):1847-1853. PubMed ID: 29181969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SERS Biosensor Based on Functionalized Au-SiNCA Integrated with a Dual Signal Amplification Strategy for Sensitive Detection of Telomerase Activity During EMT in Laryngeal Carcinoma.
    Gu Y; Li Y; Ge S; Lu W; Mao Y; Chen M; Qian Y
    Int J Nanomedicine; 2023; 18():2553-2565. PubMed ID: 37213349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells.
    Zhang J; Ma X; Wang Z
    Anal Chem; 2019 May; 91(10):6600-6607. PubMed ID: 31026147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.
    Zong S; Wang Z; Chen H; Hu G; Liu M; Chen P; Cui Y
    Nanoscale; 2014; 6(3):1808-16. PubMed ID: 24356868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A seesaw ratiometric probe for dual-spectrum imaging and detection of telomerase activity in single living cells.
    Ye S; Wu Y; Wan F; Li Y
    Chem Commun (Camb); 2019 Aug; 55(67):9967-9970. PubMed ID: 31367705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive Dual-Signal Detection of Telomerase and MiR-21 Based on Boolean Logic Operations.
    Shi J; Shen M; Zhao W; Liu J; Qu Z; Zhu M; Chen Z; Shi P; Zhang Z; Zhang SS
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51393-51402. PubMed ID: 34665612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA.
    Wu Y; Li Y; Han H; Zhao C; Zhang X
    Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification.
    Shi M; Zheng J; Liu C; Tan G; Qing Z; Yang S; Yang J; Tan Y; Yang R
    Biosens Bioelectron; 2016 Mar; 77():673-80. PubMed ID: 26496221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.