These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254 [TBL] [Abstract][Full Text] [Related]
3. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Hubka KM; Dahlin RL; Meretoja VV; Kasper FK; Mikos AG Tissue Eng Part B Rev; 2014 Dec; 20(6):641-54. PubMed ID: 24834484 [TBL] [Abstract][Full Text] [Related]
4. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. Choi JR; Yong KW; Choi JY J Cell Physiol; 2018 Mar; 233(3):1913-1928. PubMed ID: 28542924 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Somoza RA; Correa D; Labat I; Sternberg H; Forrest ME; Khalil AM; West MD; Tesar P; Caplan AI Tissue Eng Part A; 2018 Feb; 24(3-4):335-350. PubMed ID: 28602122 [TBL] [Abstract][Full Text] [Related]
6. Influence of hydrodynamic pressure on chondrogenic differentiation of human bone marrow mesenchymal stem cells cultured in perfusion system. Zamanlui S; Amirabad LM; Soleimani M; Faghihi S Biologicals; 2018 Nov; 56():1-8. PubMed ID: 30177432 [TBL] [Abstract][Full Text] [Related]
7. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Fu WL; Zhou CY; Yu JK Am J Sports Med; 2014 Mar; 42(3):592-601. PubMed ID: 24327479 [TBL] [Abstract][Full Text] [Related]
8. Proper mechanical stimulation improve the chondrogenic differentiation of mesenchymal stem cells: Improve the viscoelasticity and chondrogenic phenotype. Xie Y; Liu X; Wang S; Wang M; Wang G Biomed Pharmacother; 2019 Jul; 115():108935. PubMed ID: 31078039 [TBL] [Abstract][Full Text] [Related]
9. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Koga H; Muneta T; Nagase T; Nimura A; Ju YJ; Mochizuki T; Sekiya I Cell Tissue Res; 2008 Aug; 333(2):207-15. PubMed ID: 18560897 [TBL] [Abstract][Full Text] [Related]
10. Human Synovial Mesenchymal Stem Cells Good Manufacturing Practices for Articular Cartilage Regeneration. Fernandes TL; Kimura HA; Pinheiro CCG; Shimomura K; Nakamura N; Ferreira JR; Gomoll AH; Hernandez AJ; Bueno DF Tissue Eng Part C Methods; 2018 Dec; 24(12):709-716. PubMed ID: 30412046 [No Abstract] [Full Text] [Related]
11. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Marsano A; Medeiros da Cunha CM; Ghanaati S; Gueven S; Centola M; Tsaryk R; Barbeck M; Stuedle C; Barbero A; Helmrich U; Schaeren S; Kirkpatrick JC; Banfi A; Martin I Stem Cells Transl Med; 2016 Dec; 5(12):1730-1738. PubMed ID: 27460852 [TBL] [Abstract][Full Text] [Related]
12. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Liu K; Zhou GD; Liu W; Zhang WJ; Cui L; Liu X; Liu TY; Cao Y Biomaterials; 2008 May; 29(14):2183-92. PubMed ID: 18289667 [TBL] [Abstract][Full Text] [Related]
13. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Choi JW; Choi BH; Park SH; Pai KS; Li TZ; Min BH; Park SR Artif Organs; 2013 Jul; 37(7):648-55. PubMed ID: 23495957 [TBL] [Abstract][Full Text] [Related]
14. Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in self-assembling peptide hydrogel. Kisiday JD; Colbath AC; Tangtrongsup S J Orthop Res; 2019 Jun; 37(6):1368-1375. PubMed ID: 30095195 [TBL] [Abstract][Full Text] [Related]
15. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543 [TBL] [Abstract][Full Text] [Related]
16. Roles of hypoxia during the chondrogenic differentiation of mesenchymal stem cells. Shang J; Liu H; Li J; Zhou Y Curr Stem Cell Res Ther; 2014 Mar; 9(2):141-7. PubMed ID: 24372326 [TBL] [Abstract][Full Text] [Related]
17. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Pattappa G; Johnstone B; Zellner J; Docheva D; Angele P Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678074 [TBL] [Abstract][Full Text] [Related]
18. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly. White JL; Walker NJ; Hu JC; Borjesson DL; Athanasiou KA Tissue Eng Part A; 2018 Aug; 24(15-16):1262-1272. PubMed ID: 29478385 [TBL] [Abstract][Full Text] [Related]
19. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Pattappa G; Schewior R; Hofmeister I; Seja J; Zellner J; Johnstone B; Docheva D; Angele P Cells; 2019 Aug; 8(8):. PubMed ID: 31434236 [TBL] [Abstract][Full Text] [Related]
20. Condensation-Driven Chondrogenesis of Human Mesenchymal Stem Cells within Their Own Extracellular Matrix: Formation of Cartilage with Low Hypertrophy and Physiologically Relevant Mechanical Properties. Yang Y; Liu Y; Lin Z; Shen H; Lucas C; Kuang B; Tuan RS; Lin H Adv Biosyst; 2019 Dec; 3(12):e1900229. PubMed ID: 32648682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]