BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28763201)

  • 1. Tracking Reactive Water and Hydrogen-Bonding Networks in Photosynthetic Oxygen Evolution.
    Barry BA; Brahmachari U; Guo Z
    Acc Chem Res; 2017 Aug; 50(8):1937-1945. PubMed ID: 28763201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium, Ammonia, Redox-Active Tyrosine YZ, and Proton-Coupled Electron Transfer in the Photosynthetic Oxygen-Evolving Complex.
    Guo Z; Barry BA
    J Phys Chem B; 2017 Apr; 121(16):3987-3996. PubMed ID: 28409634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex.
    Keough JM; Zuniga AN; Jenson DL; Barry BA
    J Phys Chem B; 2013 Feb; 117(5):1296-307. PubMed ID: 23346921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium, conformational selection, and redox-active tyrosine YZ in the photosynthetic oxygen-evolving cluster.
    Guo Z; He J; Barry BA
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5658-5663. PubMed ID: 29752381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic Trapping and Isotope Editing Identify a Protonated Water Cluster as an Intermediate in the Photosynthetic Oxygen-Evolving Reaction.
    Guo Z; Barry BA
    J Phys Chem B; 2016 Sep; 120(34):8794-808. PubMed ID: 27491625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine Y
    Nagao R; Ueoka-Nakanishi H; Noguchi T
    J Biol Chem; 2017 Dec; 292(49):20046-20057. PubMed ID: 29046348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation.
    Offenbacher AR; Polander BC; Barry BA
    J Biol Chem; 2013 Oct; 288(40):29056-68. PubMed ID: 23940038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence from FTIR difference spectroscopy that D1-Asp61 influences the water reactions of the oxygen-evolving Mn4CaO5 cluster of photosystem II.
    Debus RJ
    Biochemistry; 2014 May; 53(18):2941-55. PubMed ID: 24730551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network of hydrogen bonds near the oxygen-evolving Mn(4)CaO(5) cluster of photosystem II probed with FTIR difference spectroscopy.
    Service RJ; Hillier W; Debus RJ
    Biochemistry; 2014 Feb; 53(6):1001-17. PubMed ID: 24460511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton Translocation via Tautomerization of Asn298 During the S
    Chrysina M; de Mendonça Silva JC; Zahariou G; Pantazis DA; Ioannidis N
    J Phys Chem B; 2019 Apr; 123(14):3068-3078. PubMed ID: 30888175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium and the Hydrogen-Bonded Water Network in the Photosynthetic Oxygen-Evolving Complex.
    Polander BC; Barry BA
    J Phys Chem Lett; 2013 Mar; 4(5):786-91. PubMed ID: 26281933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The EPR spectrum of tyrosine Z* and its decay kinetics in O2-evolving photosystem II preparations.
    Ioannidis N; Zahariou G; Petrouleas V
    Biochemistry; 2008 Jun; 47(24):6292-300. PubMed ID: 18494501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared detection of a polarizable proton trapped between photooxidized tyrosine YZ and a coupled histidine in photosystem II: relevance to the proton transfer mechanism of water oxidation.
    Nakamura S; Nagao R; Takahashi R; Noguchi T
    Biochemistry; 2014 May; 53(19):3131-44. PubMed ID: 24786306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor.
    Ahlbrink R; Haumann M; Cherepanov D; Bögershausen O; Mulkidjanian A; Junge W
    Biochemistry; 1998 Jan; 37(4):1131-42. PubMed ID: 9454606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential and Coupled Proton and Electron Transfer Events in the S
    Zaharieva I; Dau H; Haumann M
    Biochemistry; 2016 Dec; 55(50):6996-7004. PubMed ID: 27992997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton coupled electron transfer and redox-active tyrosine Z in the photosynthetic oxygen-evolving complex.
    Keough JM; Jenson DL; Zuniga AN; Barry BA
    J Am Chem Soc; 2011 Jul; 133(29):11084-7. PubMed ID: 21714528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Proton Transfer to Internal Water during the Photosynthetic Oxygen-Evolving Cycle.
    Brahmachari U; Barry BA
    J Phys Chem B; 2016 Nov; 120(44):11464-11473. PubMed ID: 27800685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of D1-V185 on the Water Molecules That Facilitate O
    Kim CJ; Bao H; Burnap RL; Debus RJ
    Biochemistry; 2018 Jul; 57(29):4299-4311. PubMed ID: 29944346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH dependence of the four individual transitions in the catalytic S-cycle during photosynthetic oxygen evolution.
    Bernát G; Morvaridi F; Feyziyev Y; Styring S
    Biochemistry; 2002 May; 41(18):5830-43. PubMed ID: 11980487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium exchange and structural changes during the photosynthetic oxygen evolving cycle.
    De Riso A; Jenson DL; Barry BA
    Biophys J; 2006 Sep; 91(5):1999-2008. PubMed ID: 16782800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.