These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28763206)

  • 1. Symmetry-Adapted Ro-vibrational Basis Functions for Variational Nuclear Motion Calculations: TROVE Approach.
    Yurchenko SN; Yachmenev A; Ovsyannikov RI
    J Chem Theory Comput; 2017 Sep; 13(9):4368-4381. PubMed ID: 28763206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treating linear molecule HCCH in calculations of rotation-vibration spectra.
    Chubb KL; Yachmenev A; Tennyson J; Yurchenko SN
    J Chem Phys; 2018 Jul; 149(1):014101. PubMed ID: 29981541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational properties of the discrete variable representation: discrete variable representation via effective operators.
    Szalay V; Ádám P
    J Chem Phys; 2012 Aug; 137(6):064118. PubMed ID: 22897266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations.
    Mátyus E; Czakó G; Császár AG
    J Chem Phys; 2009 Apr; 130(13):134112. PubMed ID: 19355722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator.
    Szalay V
    J Chem Phys; 2015 May; 142(17):174107. PubMed ID: 25956090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.
    Yachmenev A; Yurchenko SN
    J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward breaking the curse of dimensionality in (ro)vibrational computations of molecular systems with multiple large-amplitude motions.
    Avila G; Mátyus E
    J Chem Phys; 2019 May; 150(17):174107. PubMed ID: 31067897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame.
    Wang XG; Carrington T
    J Chem Phys; 2013 Mar; 138(10):104106. PubMed ID: 23514464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On Construction of Projection Operators.
    Izmaylov AF
    J Phys Chem A; 2019 Apr; 123(15):3429-3433. PubMed ID: 30916963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonproduct quadrature grids for solving the vibrational Schrödinger equation.
    Avila G; Carrington T
    J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: tetrahedral molecules.
    Nikitin AV; Rey M; Tyuterev VG
    J Chem Phys; 2015 Mar; 142(9):094118. PubMed ID: 25747072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the Schrödinger equation of hydrogen molecules with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of the Σ symmetry.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2019 Mar; 21(12):6327-6340. PubMed ID: 30480681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalence between a generalized dendritic network and a set of one-dimensional networks as a ground of linear dynamics.
    Koda S
    J Chem Phys; 2015 May; 142(20):204112. PubMed ID: 26026439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia.
    Fábri C; Mátyus E; Császár AG
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():84-9. PubMed ID: 23702049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative diagonalization in the multiconfigurational time-dependent Hartree approach: ro-vibrational eigenstates.
    Wodraszka R; Manthe U
    J Phys Chem A; 2013 Aug; 117(32):7246-55. PubMed ID: 23565665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new basis set for molecular bending degrees of freedom.
    Jutier L
    J Chem Phys; 2010 Jul; 133(3):034107. PubMed ID: 20649308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving the Schrödinger equation of the hydrogen molecule with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of Π symmetry.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2020 Jun; 22(24):13489-13497. PubMed ID: 32529196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.