These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28763225)

  • 1. Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes.
    Chiu KC; Falk AL; Ho PH; Farmer DB; Tulevski G; Lee YH; Avouris P; Han SJ
    Nano Lett; 2017 Sep; 17(9):5641-5645. PubMed ID: 28763225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically ultrastrong plasmon-exciton interactions in crystallized films of carbon nanotubes.
    Ho PH; Farmer DB; Tulevski GS; Han SJ; Bishop DM; Gignac LM; Bucchignano J; Avouris P; Falk AL
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12662-12667. PubMed ID: 30459274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes.
    Falk AL; Chiu KC; Farmer DB; Cao Q; Tersoff J; Lee YH; Avouris P; Han SJ
    Phys Rev Lett; 2017 Jun; 118(25):257401. PubMed ID: 28696746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Hyperbolic Metamaterials Based on Self-Assembled Carbon Nanotubes.
    Roberts JA; Yu SJ; Ho PH; Schoeche S; Falk AL; Fan JA
    Nano Lett; 2019 May; 19(5):3131-3137. PubMed ID: 30950280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals.
    Zakharko Y; Graf A; Schießl SP; Hähnlein B; Pezoldt J; Gather MC; Zaumseil J
    Nano Lett; 2016 May; 16(5):3278-84. PubMed ID: 27105249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes.
    Zhang Q; Hároz EH; Jin Z; Ren L; Wang X; Arvidson RS; Lüttge A; Kono J
    Nano Lett; 2013; 13(12):5991-6. PubMed ID: 24224898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface.
    Wang Y; Cui Z; Zhu D; Zhang X; Qian L
    Opt Express; 2018 Jun; 26(12):15343-15352. PubMed ID: 30114783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film.
    Wang Y; Zhao X; Duan G; Zhang X
    Opt Express; 2016 Jul; 24(14):15730-41. PubMed ID: 27410845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme Polarization Anisotropy in Resonant Third-Harmonic Generation from Aligned Carbon Nanotube Films.
    Zhu S; Li W; Yu S; Komatsu N; Baydin A; Wang F; Sun F; Wang C; Chen W; Tan CS; Liang H; Yomogida Y; Yanagi K; Kono J; Wang QJ
    Adv Mater; 2023 Oct; 35(41):e2304082. PubMed ID: 37391190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous layer gap plasmon resonators.
    Nielsen MG; Gramotnev DK; Pors A; Albrektsen O; Bozhevolnyi SI
    Opt Express; 2011 Sep; 19(20):19310-22. PubMed ID: 21996871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes.
    He X; Gao W; Xie L; Li B; Zhang Q; Lei S; Robinson JM; Hároz EH; Doorn SK; Wang W; Vajtai R; Ajayan PM; Adams WW; Hauge RH; Kono J
    Nat Nanotechnol; 2016 Jul; 11(7):633-8. PubMed ID: 27043199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density metallic nanogap arrays for the sensitive detection of single-walled carbon nanotube thin films.
    Park HR; Namgung S; Chen X; Oh SH
    Faraday Discuss; 2015; 178():195-201. PubMed ID: 25760454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatically Tunable Near-Infrared Plasmonic Resonances in Solution-Processed Atomically Thin NbSe
    Zhao M; Li J; Sebek M; Yang L; Liu YJ; Bosman M; Wang Q; Zheng X; Lu J; Teng J
    Adv Mater; 2021 Aug; 33(32):e2101950. PubMed ID: 34176177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic and optical responses of a composite material comprising individual single-walled carbon-nanotubes with a polymer coating.
    Shuba MV; Yuko D; Kuzhir PP; Maksimenko SA; Ksenevich VK; Lim SH; Kim TH; Choi SM
    Sci Rep; 2020 Jun; 10(1):9361. PubMed ID: 32518356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable-Manufactured Metamaterials for Simultaneous Visible Transmission, Infrared Reflection, and Microwave Absorption.
    Li D; Chen Q; Huang J; Xu H; Lu Y; Song W
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35834403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical control of optical plasmon resonance with graphene.
    Kim J; Son H; Cho DJ; Geng B; Regan W; Shi S; Kim K; Zettl A; Shen YR; Wang F
    Nano Lett; 2012 Nov; 12(11):5598-602. PubMed ID: 23025816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube terahertz polarizer.
    Ren L; Pint CL; Booshehri LG; Rice WD; Wang X; Hilton DJ; Takeya K; Kawayama I; Tonouchi M; Hauge RH; Kono J
    Nano Lett; 2009 Jul; 9(7):2610-3. PubMed ID: 19492842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Terahertz Hybrid Metal-Graphene Plasmons.
    Jadidi MM; Sushkov AB; Myers-Ward RL; Boyd AK; Daniels KM; Gaskill DK; Fuhrer MS; Drew HD; Murphy TE
    Nano Lett; 2015 Oct; 15(10):7099-104. PubMed ID: 26397718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.