These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 28763706)
1. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Zegaoui Z; Planchais S; Cabassa C; Djebbar R; Belbachir OA; Carol P J Plant Physiol; 2017 Nov; 218():26-34. PubMed ID: 28763706 [TBL] [Abstract][Full Text] [Related]
2. Evaluating stress responses in cowpea under drought stress. Carvalho M; Castro I; Moutinho-Pereira J; Correia C; Egea-Cortines M; Matos M; Rosa E; Carnide V; Lino-Neto T J Plant Physiol; 2019 Oct; 241():153001. PubMed ID: 31415937 [TBL] [Abstract][Full Text] [Related]
3. Drought increases cowpea (Vigna unguiculata [L.] Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection. Silva RG; Vasconcelos IM; Martins TF; Varela AL; Souza PF; Lobo AK; Silva FD; Silveira JA; Oliveira JT Plant Physiol Biochem; 2016 Dec; 109():91-102. PubMed ID: 27669396 [TBL] [Abstract][Full Text] [Related]
4. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. Dobrá J; Vanková R; Havlová M; Burman AJ; Libus J; Storchová H J Plant Physiol; 2011 Sep; 168(13):1588-97. PubMed ID: 21481968 [TBL] [Abstract][Full Text] [Related]
5. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Cvikrová M; Gemperlová L; Martincová O; Vanková R Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075 [TBL] [Abstract][Full Text] [Related]
6. Cowpea Physiological Responses to Terminal Drought-Comparison between Four Landraces and a Commercial Variety. Nunes C; Moreira R; Pais I; Semedo J; Simões F; Veloso MM; Scotti-Campos P Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270063 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. El Maarouf H; Zuily-Fodil Y; Gareil M; d'Arcy-Lameta A; Pham-Thi AT Plant Mol Biol; 1999 Apr; 39(6):1257-65. PubMed ID: 10380811 [TBL] [Abstract][Full Text] [Related]
8. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Sengupta D; Guha A; Reddy AR J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991 [TBL] [Abstract][Full Text] [Related]
9. Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Torres-Franklin ML; Gigon A; de Melo DF; Zuily-Fodil Y; Pham-Thi AT Physiol Plant; 2007 Oct; 131(2):201-10. PubMed ID: 18251892 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Albert B; Le Cahérec F; Niogret MF; Faes P; Avice JC; Leport L; Bouchereau A Planta; 2012 Aug; 236(2):659-76. PubMed ID: 22526495 [TBL] [Abstract][Full Text] [Related]
11. Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea. Mishra S; Sahu G; Shaw BP Plant Cell Rep; 2022 Jan; 41(1):75-94. PubMed ID: 34570259 [TBL] [Abstract][Full Text] [Related]
12. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Singh SK; Raja Reddy K J Photochem Photobiol B; 2011 Oct; 105(1):40-50. PubMed ID: 21820316 [TBL] [Abstract][Full Text] [Related]
14. A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. Varela ALN; Oliveira JTA; Komatsu S; Silva RGG; Martins TF; Souza PFN; Lobo AKM; Vasconcelos IM; Carvalho FEL; Silveira JAG J Proteomics; 2019 Mar; 194():200-217. PubMed ID: 30471437 [TBL] [Abstract][Full Text] [Related]
15. The expression of the genes involved in redox metabolism and hydrogen peroxide balance is associated with the resistance of cowpea [Vigna unguiculata (L.) Walp.] to the hemibiotrophic fungus Colletotrichum gloeosporioides. Silva FDA; Vasconcelos IM; Saraiva KDC; Costa JH; Fernandes CF; Oliveira JTA J Plant Physiol; 2019 Feb; 233():73-83. PubMed ID: 30616072 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA prediction and its function in regulating drought-related genes in cowpea. Shui XR; Chen ZW; Li JX Plant Sci; 2013 Sep; 210():25-35. PubMed ID: 23849110 [TBL] [Abstract][Full Text] [Related]
18. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. Nair AS; Abraham TK; Jaya DS J Environ Biol; 2008 Sep; 29(5):689-91. PubMed ID: 19295066 [TBL] [Abstract][Full Text] [Related]
19. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335 [TBL] [Abstract][Full Text] [Related]