These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Protein aggregates and proteostasis in aging: Amylin and β-cell function. Press M; Jung T; König J; Grune T; Höhn A Mech Ageing Dev; 2019 Jan; 177():46-54. PubMed ID: 29580826 [TBL] [Abstract][Full Text] [Related]
5. Aging: central role for autophagy and the lysosomal degradative system. Rajawat YS; Hilioti Z; Bossis I Ageing Res Rev; 2009 Jul; 8(3):199-213. PubMed ID: 19427410 [TBL] [Abstract][Full Text] [Related]
7. Protein oxidation in aging and the removal of oxidized proteins. Höhn A; König J; Grune T J Proteomics; 2013 Oct; 92():132-59. PubMed ID: 23333925 [TBL] [Abstract][Full Text] [Related]
8. Potential Influence of Cyclo(His-Pro) on Proteostasis: Impact on Neurodegenerative Diseases. Grottelli S; Costanzi E; Peirce MJ; Minelli A; Cellini B; Bellezza I Curr Protein Pept Sci; 2018; 19(8):805-812. PubMed ID: 29708066 [TBL] [Abstract][Full Text] [Related]
9. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Moldogazieva NT; Mokhosoev IM; Mel'nikova TI; Porozov YB; Terentiev AA Oxid Med Cell Longev; 2019; 2019():3085756. PubMed ID: 31485289 [TBL] [Abstract][Full Text] [Related]
10. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Keller JN; Dimayuga E; Chen Q; Thorpe J; Gee J; Ding Q Int J Biochem Cell Biol; 2004 Dec; 36(12):2376-91. PubMed ID: 15325579 [TBL] [Abstract][Full Text] [Related]
11. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Kastle M; Grune T Curr Pharm Des; 2011 Dec; 17(36):4007-22. PubMed ID: 22188451 [TBL] [Abstract][Full Text] [Related]
13. Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells. Margulis B; Tsimokha A; Zubova S; Guzhova I Cells; 2020 May; 9(5):. PubMed ID: 32456366 [TBL] [Abstract][Full Text] [Related]
14. We Are What We Eat: Ubiquitin-Proteasome System (UPS) Modulation Through Dietary Products. Panagiotidou E; Chondrogianni N Adv Exp Med Biol; 2020; 1233():329-348. PubMed ID: 32274765 [TBL] [Abstract][Full Text] [Related]
15. Metabolic Syndrome, Redox State, and the Proteasomal System. Höhn A; König J; Jung T Antioxid Redox Signal; 2016 Dec; 25(16):902-917. PubMed ID: 27412984 [TBL] [Abstract][Full Text] [Related]
17. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Brunk UT; Terman A Eur J Biochem; 2002 Apr; 269(8):1996-2002. PubMed ID: 11985575 [TBL] [Abstract][Full Text] [Related]
18. Cellular oxidants and the proteostasis network: balance between activation and destruction. Ulfig A; Jakob U Trends Biochem Sci; 2024 Sep; 49(9):761-774. PubMed ID: 39168791 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of chaperone-mediated autophagy prevents glucotoxicity in the Caenorhabditis elegans mev-1 mutant by activation of the proteasome. Eisermann DJ; Wenzel U; Fitzenberger E Biochem Biophys Res Commun; 2017 Feb; 484(1):171-175. PubMed ID: 28089866 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological inhibition of USP14 delays proteostasis-associated aging in a proteasome-dependent but foxo-independent manner. Lim JJ; Noh S; Kang W; Hyun B; Lee BH; Hyun S Autophagy; 2024 Dec; 20(12):2752-2768. PubMed ID: 39113571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]