These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28764011)
1. Galloyl moieties enhance the binding of (-)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis. Zhang L; Wang Y; Xu M; Hu X Food Chem; 2017 Dec; 237():39-45. PubMed ID: 28764011 [TBL] [Abstract][Full Text] [Related]
2. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin. Zhang L; Sahu ID; Xu M; Wang Y; Hu X Food Chem; 2017 Apr; 221():1923-1929. PubMed ID: 27979181 [TBL] [Abstract][Full Text] [Related]
3. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Jia J; Gao X; Hao M; Tang L Food Chem; 2017 Aug; 228():143-151. PubMed ID: 28317707 [TBL] [Abstract][Full Text] [Related]
4. Analysis of β-lactoglobulin-epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic-protein interactions. Qie X; Chen Y; Quan W; Wang Z; Zeng M; Qin F; Chen J; He Z Food Funct; 2020 May; 11(5):3867-3878. PubMed ID: 32426776 [TBL] [Abstract][Full Text] [Related]
5. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Li B; Du W; Jin J; Du Q J Agric Food Chem; 2012 Apr; 60(13):3477-84. PubMed ID: 22409289 [TBL] [Abstract][Full Text] [Related]
6. Differences in binding behavior of (-)-epigallocatechin gallate to β-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B). Keppler JK; Martin D; Garamus VM; Schwarz K J Mol Recognit; 2015 Nov; 28(11):656-66. PubMed ID: 26038095 [TBL] [Abstract][Full Text] [Related]
7. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes. Lestringant P; Guri A; Gülseren I; Relkin P; Corredig M J Agric Food Chem; 2014 Aug; 62(33):8357-64. PubMed ID: 25077960 [TBL] [Abstract][Full Text] [Related]
9. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Liu T; Liu M; Liu H; Ren Y; Zhao Y; Yan H; Wang Q; Zhang N; Ding Z; Wang Z Food Funct; 2021 Aug; 12(16):7126-7144. PubMed ID: 34180492 [TBL] [Abstract][Full Text] [Related]
10. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: Multi-spectroscopy and molecular simulation methods. Kuang X; Deng Z; Feng B; He R; Chen L; Liang G Int J Biol Macromol; 2024 May; 268(Pt 1):131773. PubMed ID: 38657930 [TBL] [Abstract][Full Text] [Related]
11. Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (-)-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Dönmez Ö; Mogol BA; Gökmen V; Tang N; Andersen ML; Chatterton DEW Food Funct; 2020 Jul; 11(7):6038-6053. PubMed ID: 32558864 [TBL] [Abstract][Full Text] [Related]
12. Covalent modification of β-lactoglobulin by (-)-epigallocatechin-3-gallate results in a novel antioxidant molecule. Tao F; Xiao C; Chen W; Zhang Y; Pan J; Jia Z Int J Biol Macromol; 2019 Apr; 126():1186-1191. PubMed ID: 30615967 [TBL] [Abstract][Full Text] [Related]
13. Molecular insights into α-glucosidase inhibition and antiglycation properties affected by the galloyl moiety in (-)-epigallocatechin-3-gallate. Guan Q; Tang L; Zhang L; Huang L; Xu M; Wang Y; Zhang M J Sci Food Agric; 2023 Dec; 103(15):7381-7392. PubMed ID: 37390299 [TBL] [Abstract][Full Text] [Related]
14. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Gao J; Mao Y; Xiang C; Cao M; Ren G; Wang K; Ma X; Wu D; Xie H Food Chem; 2021 Aug; 354():129516. PubMed ID: 33744663 [TBL] [Abstract][Full Text] [Related]
15. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate. Dai W; Ruan C; Sun Y; Gao X; Liang J Colloids Surf B Biointerfaces; 2020 Apr; 188():110802. PubMed ID: 31958618 [TBL] [Abstract][Full Text] [Related]
16. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction. Perusko M; Al-Hanish A; Mihailovic J; Minic S; Trifunovic S; Prodic I; Cirkovic Velickovic T Food Chem; 2017 Oct; 232():744-752. PubMed ID: 28490136 [TBL] [Abstract][Full Text] [Related]
17. Effect of the consumption of β-lactoglobulin and epigallocatechin-3-gallate with or without calcium on glucose tolerance in C57BL/6 mice. Carnovale V; Pilon G; Britten M; Bazinet L; Couillard C Int J Food Sci Nutr; 2016; 67(3):298-304. PubMed ID: 26960683 [TBL] [Abstract][Full Text] [Related]
18. Targeting the heme protein hemoglobin by (-)-epigallocatechin gallate and the study of polyphenol-protein association using multi-spectroscopic and computational methods. Das S; Sarmah S; Hazarika Z; Rohman MA; Sarkhel P; Jha AN; Singha Roy A Phys Chem Chem Phys; 2020 Jan; 22(4):2212-2228. PubMed ID: 31913367 [TBL] [Abstract][Full Text] [Related]
19. In Silico Investigations on the Synergistic Binding Mechanism of Functional Compounds with Beta-Lactoglobulin. Meng T; Wang Z; Zhang H; Zhao Z; Huang W; Xu L; Liu M; Li J; Yan H Molecules; 2024 Feb; 29(5):. PubMed ID: 38474468 [TBL] [Abstract][Full Text] [Related]
20. [Mechanism of interaction between risperidone and tea catechin (2) influence of presence of galloyl group in catechin on insoluble complex formation with risperidone]. Ikeda H; Moriwaki H; Matsubara T; Yukawa M; Iwase Y; Yukawa E; Aki H Yakugaku Zasshi; 2012; 132(1):145-53. PubMed ID: 22214589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]