These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28764012)
1. Antioxidative mechanisms in chlorogenic acid. Tošović J; Marković S; Dimitrić Marković JM; Mojović M; Milenković D Food Chem; 2017 Dec; 237():390-398. PubMed ID: 28764012 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Marković S; Tošović J Food Chem; 2016 Nov; 210():585-92. PubMed ID: 27211685 [TBL] [Abstract][Full Text] [Related]
3. Antioxidative activity of chlorogenic acid relative to trolox in aqueous solution - DFT study. Tošović J; Marković S Food Chem; 2019 Apr; 278():469-475. PubMed ID: 30583398 [TBL] [Abstract][Full Text] [Related]
4. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K Comput Biol Chem; 2019 Jun; 80():66-78. PubMed ID: 30928870 [TBL] [Abstract][Full Text] [Related]
5. A DFT study on OH radical scavenging activities of eriodictyol, Isosakuranetin and pinocembrin. Erdoğan Ş; Özbakır Işın D J Biomol Struct Dyn; 2022; 40(21):10802-10811. PubMed ID: 34286668 [TBL] [Abstract][Full Text] [Related]
6. Synergic application of spectroscopic and theoretical methods to the chlorogenic acid structure elucidation. Marković S; Tošović J; Dimitrić Marković JM Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jul; 164():67-75. PubMed ID: 27082653 [TBL] [Abstract][Full Text] [Related]
7. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. Klein E; Lukes V J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630 [TBL] [Abstract][Full Text] [Related]
8. The surrounding environments on the structure and antioxidative activity of luteolin. Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM J Mol Model; 2018 Jun; 24(7):149. PubMed ID: 29869725 [TBL] [Abstract][Full Text] [Related]
9. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Mittal A; Vashistha VK; Das DK Free Radic Res; 2022; 56(5-6):378-397. PubMed ID: 36063087 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Zheng YZ; Deng G; Liang Q; Chen DF; Guo R; Lai RC Sci Rep; 2017 Aug; 7(1):7543. PubMed ID: 28790397 [TBL] [Abstract][Full Text] [Related]
12. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Wang G; Xue Y; An L; Zheng Y; Dou Y; Zhang L; Liu Y Food Chem; 2015 Mar; 171():89-97. PubMed ID: 25308647 [TBL] [Abstract][Full Text] [Related]
13. Computational study on the antioxidant property of coumarin-fused coumarins. Wang G; Liu Y; Zhang L; An L; Chen R; Liu Y; Luo Q; Li Y; Wang H; Xue Y Food Chem; 2020 Jan; 304():125446. PubMed ID: 31491715 [TBL] [Abstract][Full Text] [Related]
14. Tocopheramines and tocotrienamines as antioxidants: ESR spectroscopy, rapid kinetics and DFT calculations. Bamonti L; Hosoya T; Pirker KF; Böhmdorfer S; Mazzini F; Galli F; Netscher T; Rosenau T; Gille L Bioorg Med Chem; 2013 Sep; 21(17):5039-46. PubMed ID: 23876337 [TBL] [Abstract][Full Text] [Related]
15. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Biela M; Kleinová A; Klein E Phytochemistry; 2022 Aug; 200():113254. PubMed ID: 35623472 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Xue Y; Zheng Y; An L; Dou Y; Liu Y Food Chem; 2014 May; 151():198-206. PubMed ID: 24423521 [TBL] [Abstract][Full Text] [Related]
17. Structure, antioxidative potency and potential scavenging of OH and OOH of phenylethyl-3,4-dihydroxyhydrocinnamate in protic and aprotic media: DFT study. Holtomo O; Nsangou M; Fifen JJ; Motapon O J Mol Graph Model; 2017 Nov; 78():221-233. PubMed ID: 29101851 [TBL] [Abstract][Full Text] [Related]
18. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study. Mittal A; Kakkar R Free Radic Res; 2020 Oct; 54(10):777-786. PubMed ID: 33183109 [TBL] [Abstract][Full Text] [Related]
19. Exploring antioxidative properties of xanthohumol and isoxanthohumol: An integrated experimental and computational approach with isoxanthohumol pKa determination. Tošović J; Kolenc Z; Hostnik G; Bren U Food Chem; 2025 Jan; 463(Pt 3):141377. PubMed ID: 39342736 [TBL] [Abstract][Full Text] [Related]
20. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Jeremić S; Amić A; Stanojević-Pirković M; Marković Z Org Biomol Chem; 2018 Mar; 16(11):1890-1902. PubMed ID: 29479603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]