These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28764012)

  • 21. Theoretical study on the radical scavenging activity and mechanism of four kinds of Gnetin molecule.
    Shang Y; Li X; Li Z; Zhou J; Qu L; Chen K
    Food Chem; 2022 Jun; 378():131975. PubMed ID: 35033703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study.
    Menacer R; Rekkab S; Kabouche Z
    J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The antioxidant potential of retrochalcones isolated from liquorice root: A comparative DFT study.
    Mittal A; Kakkar R
    Phytochemistry; 2021 Dec; 192():112964. PubMed ID: 34598043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alizarin as a potential protector of proteins against damage caused by hydroperoxyl radical.
    Marković Z; Komolkin AV; Egorov AV; Milenković D; Jeremić S
    Chem Biol Interact; 2023 Mar; 373():110395. PubMed ID: 36758887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism.
    Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y
    J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer.
    Litwinienko G; Ingold KU
    J Org Chem; 2004 Sep; 69(18):5888-96. PubMed ID: 15373474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins.
    Estévez L; Otero N; Mosquera RA
    J Phys Chem B; 2010 Jul; 114(29):9706-12. PubMed ID: 20608689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic and kinetic studies on antioxidant capacity of amentoflavone: a DFT (density functional theory) computational approach.
    Thuy PT; Son NT
    Free Radic Res; 2022; 56(7-8):526-535. PubMed ID: 36370431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of different free radicals on scavenging potency of gallic acid.
    Đorović J; Marković JM; Stepanić V; Begović N; Amić D; Marković Z
    J Mol Model; 2014 Jul; 20(7):2345. PubMed ID: 24965934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density functional predictions of antioxidant activity and UV spectral features of nasutin A, isonasutin, ellagic acid, and one of its possible derivatives.
    Mazzone G; Toscano M; Russo N
    J Agric Food Chem; 2013 Oct; 61(40):9650-7. PubMed ID: 24024615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of Antiradical Activity of Newly Synthesized 4,7-Dihydroxycoumarin Derivatives-Experimental and Kinetic DFT Study.
    Milanović Ž; Dimić D; Žižić M; Milenković D; Marković Z; Avdović E
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity.
    Stepanić V; Gall Trošelj K; Lučić B; Marković Z; Amić D
    Food Chem; 2013 Nov; 141(2):1562-70. PubMed ID: 23790952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study.
    Lu XQ; Qin S; Li J
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical and Experimental Investigation of the Antioxidation Mechanism of Loureirin C by Radical Scavenging for Treatment of Stroke.
    Liu YS; Zhang GY; Hou Y
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radical Scavenging Activity of Natural-Based Cassaine Diterpenoid Amides and Amines.
    Ngo TC; Nguyen TH; Dao DQ
    J Chem Inf Model; 2019 Feb; 59(2):766-776. PubMed ID: 30681326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.
    Marković Z; Đorović J; Petrović ZD; Petrović VP; Simijonović D
    J Mol Model; 2015 Nov; 21(11):293. PubMed ID: 26508294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms.
    Dimitrić Marković JM; Pejin B; Milenković D; Amić D; Begović N; Mojović M; Marković ZS
    Food Chem; 2017 Mar; 218():440-446. PubMed ID: 27719933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus.
    Dao DQ; Phan TTT; Nguyen TLA; Trinh PTH; Tran TTV; Lee JS; Shin HJ; Choi BK
    J Chem Inf Model; 2020 Mar; 60(3):1329-1351. PubMed ID: 31999921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage.
    Lengyel J; Rimarčík J; Vagánek A; Klein E
    Phys Chem Chem Phys; 2013 Jul; 15(26):10895-903. PubMed ID: 23698223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.