These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28764377)

  • 1. Entropic elasticity and dynamics of the bacterial chromosome: A simulation study.
    Pereira MCF; Brackley CA; Lintuvuori JS; Marenduzzo D; Orlandini E
    J Chem Phys; 2017 Jul; 147(4):044908. PubMed ID: 28764377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer segregation under confinement: Influences of macromolecular crowding and the interaction between the polymer and crowders.
    Chen Y; Yu W; Wang J; Luo K
    J Chem Phys; 2015 Oct; 143(13):134904. PubMed ID: 26450331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-protein interactions and bacterial chromosome architecture.
    Stavans J; Oppenheim A
    Phys Biol; 2006 Dec; 3(4):R1-10. PubMed ID: 17200598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins.
    de Vries R
    Biochimie; 2010 Dec; 92(12):1715-21. PubMed ID: 20615449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics.
    Mulligan PJ; Chen YJ; Phillips R; Spakowitz AJ
    Biophys J; 2015 Aug; 109(3):618-29. PubMed ID: 26244743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin.
    Dame RT
    Mol Microbiol; 2005 May; 56(4):858-70. PubMed ID: 15853876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction.
    Johnson J; Brackley CA; Cook PR; Marenduzzo D
    J Phys Condens Matter; 2015 Feb; 27(6):064119. PubMed ID: 25563801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropic attraction: Polymer compaction and expansion induced by nano-particles in confinement.
    Liao GJ; Chien FT; Luzhbin D; Chen YL
    J Chem Phys; 2015 May; 142(17):174904. PubMed ID: 25956117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On binding of DNA-bending proteins to DNA minicircles.
    Medalion S; Rabin Y
    J Chem Phys; 2012 Jan; 136(2):025102. PubMed ID: 22260615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping two self-avoiding polymers in a closed cylindrical pore: Implications for chromosome segregation in a bacterial cell.
    Jung Y; Ha BY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051926. PubMed ID: 21230519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins.
    Dahlke K; Sing CE
    J Chem Phys; 2018 Feb; 148(8):084902. PubMed ID: 29495783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ.
    Schumacher MA; Zeng W
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4988-93. PubMed ID: 27091999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure of bacterial chromosome].
    Kois A; Swiatek M; Zakrzewska-Czerwińska J
    Postepy Hig Med Dosw (Online); 2007 Oct; 61():534-40. PubMed ID: 17928796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitated Dissociation of a Nucleoid Protein from the Bacterial Chromosome.
    Hadizadeh N; Johnson RC; Marko JF
    J Bacteriol; 2016 Jun; 198(12):1735-42. PubMed ID: 27044624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective.
    Luijsterburg MS; Noom MC; Wuite GJ; Dame RT
    J Struct Biol; 2006 Nov; 156(2):262-72. PubMed ID: 16879983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulation of a Feather-Boa Model of a Bacterial Chromosome.
    Chaudhuri D; Mulder BM
    Methods Mol Biol; 2018; 1837():403-415. PubMed ID: 30109621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of bacterial chromosome: An analysis of DNA-protein interactions in vivo.
    Hołówka J; Płachetka M
    Postepy Hig Med Dosw (Online); 2017 Dec; 71(0):1005-1014. PubMed ID: 29225199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building bridges within the bacterial chromosome.
    Song D; Loparo JJ
    Trends Genet; 2015 Mar; 31(3):164-73. PubMed ID: 25682183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of bacterial H-NS protein.
    Grainger DC
    Biochem Soc Trans; 2016 Dec; 44(6):1561-1569. PubMed ID: 27913665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy/entropy partition of force at DNA stretching.
    Bleha T; Cifra P
    Biopolymers; 2022 May; 113(5):e23487. PubMed ID: 35212392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.