These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28764392)

  • 1. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles.
    Fan D; Liao F; Wang Q
    Chaos; 2017 Jul; 27(7):073103. PubMed ID: 28764392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus.
    Fan D; Wang Q; Su J; Xi H
    J Comput Neurosci; 2017 Dec; 43(3):203-225. PubMed ID: 28939929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?
    Leresche N; Lambert RC; Errington AC; Crunelli V
    Pflugers Arch; 2012 Jan; 463(1):201-12. PubMed ID: 21861061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats.
    Pinault D; Slézia A; Acsády L
    J Physiol; 2006 Jul; 574(Pt 1):209-27. PubMed ID: 16627566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research.
    Gobbo D; Scheller A; Kirchhoff F
    Front Neurol; 2021; 12():661408. PubMed ID: 34177766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global and focal aspects of absence epilepsy: the contribution of genetic models.
    van Luijtelaar G; Sitnikova E
    Neurosci Biobehav Rev; 2006; 30(7):983-1003. PubMed ID: 16725200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats.
    Kozák G; Földi T; Berényi A
    eNeuro; 2020; 7(1):. PubMed ID: 31862790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity.
    Terlau J; Yang JW; Khastkhodaei Z; Seidenbecher T; Luhmann HJ; Pape HC; Lüttjohann A
    J Physiol; 2020 Jun; 598(12):2397-2414. PubMed ID: 32144956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis.
    Kostopoulos GK
    Clin Neurophysiol; 2000 Sep; 111 Suppl 2():S27-38. PubMed ID: 10996552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory.
    Meeren H; van Luijtelaar G; Lopes da Silva F; Coenen A
    Arch Neurol; 2005 Mar; 62(3):371-6. PubMed ID: 15767501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker.
    Fuentealba P; Steriade M
    Prog Neurobiol; 2005 Feb; 75(2):125-41. PubMed ID: 15784303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of coupling distances in a coupled thalamocortical network in the treatment of epilepsy.
    Pan Y; Zhang H; Xie Y; Chai Y
    J Theor Biol; 2022 Oct; 550():111206. PubMed ID: 35850254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of Phospholipase C β1 in the Thalamic Reticular Nucleus Induces Absence Seizures.
    Chang B; Byun J; Kim KK; Lee SE; Lee B; Kim KS; Ryu H; Shin HS; Cheong E
    Exp Neurobiol; 2022 Apr; 31(2):116-130. PubMed ID: 35674000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy.
    Sitnikova E; Hramov AE; Grubov V; Koronovsky AA
    Brain Res; 2014 Jan; 1543():290-9. PubMed ID: 24231550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and pathological spindling phenomena have similar regional EEG power distributions.
    Mackenzie L; Pope KJ; Willoughby JO
    Brain Res; 2004 May; 1008(1):92-106. PubMed ID: 15081386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-type Ca2+ channels in absence epilepsy.
    Cheong E; Shin HS
    Pflugers Arch; 2014 Apr; 466(4):719-34. PubMed ID: 24519464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model.
    Dervinis M; Crunelli V
    CNS Neurosci Ther; 2024 Mar; 30(3):e14204. PubMed ID: 37032628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalamic synchrony and dynamic regulation of global forebrain oscillations.
    Huguenard JR; McCormick DA
    Trends Neurosci; 2007 Jul; 30(7):350-6. PubMed ID: 17544519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.