These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28764469)

  • 1. Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model.
    Picotti S; Carcione JM
    J Acoust Soc Am; 2017 Jul; 142(1):134. PubMed ID: 28764469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P- and S-wave simulation using a Cole-Cole model to incorporate thermoelastic attenuation and dispersion.
    Carcione JM; Picotti S; Ba J
    J Acoust Soc Am; 2021 Mar; 149(3):1946. PubMed ID: 33765788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation.
    Caputo M; Carcione JM; Cavallini F
    Ultrasound Med Biol; 2011 Jun; 37(6):996-1004. PubMed ID: 21601139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.
    Germán Rubino J; Monachesi LB; Müller TM; Guarracino L; Holliger K
    J Acoust Soc Am; 2013 Dec; 134(6):4742. PubMed ID: 25669286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities.
    Zhang B; Yang D; Cheng Y; Zhang Y
    Sci Bull (Beijing); 2019 Sep; 64(17):1246-1254. PubMed ID: 36659605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-element numerical simulations of seismic attenuation in finely layered rocks.
    Picotti S; Carcione JM; Santos JE; Gei D; Cavallini F
    J Acoust Soc Am; 2020 Oct; 148(4):1978. PubMed ID: 33138489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of dynamic seismic responses to viscous fluid of digitized three-dimensional Berea sandstones with a coupled finite-difference method.
    Zhang Y; Toksöz MN
    J Acoust Soc Am; 2012 Aug; 132(2):630-40. PubMed ID: 22894185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Velocity dispersion in rocks: A laboratory technique for direct measurement of P-wave modulus at seismic frequencies.
    Lozovyi S; Bauer A
    Rev Sci Instrum; 2019 Feb; 90(2):024501. PubMed ID: 30831720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media.
    Liu QH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.
    Wang D; Wang L; Ding P
    Ultrasonics; 2016 Aug; 70():266-74. PubMed ID: 27259119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks.
    Garra R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036605. PubMed ID: 22060520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring geological storage of CO
    Fawad M; Mondol NH
    Sci Rep; 2022 Jan; 12(1):297. PubMed ID: 34997173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional finite-difference time-domain formulation for sound propagation in a temperature-dependent elastomer-fluid medium.
    Huang Y; Hou H; Oterkus S; Wei Z; Gao N
    J Acoust Soc Am; 2020 Jan; 147(1):428. PubMed ID: 32007005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and field investigations on seismic response of joints and beddings in rocks.
    Liu Y; Lu CP; Liu B; Zhang H; Wang HY
    Ultrasonics; 2019 Aug; 97():46-56. PubMed ID: 31078952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic precursor wave propagation in viscoelastic media.
    Zhu GK; Mojahedi M; Sarris CD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):505-14. PubMed ID: 24569254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.
    Maestas JT; Collis JM
    J Acoust Soc Am; 2016 Mar; 139(3):1420-9. PubMed ID: 27036279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation of Elastic Wave Field in Viscoelastic Two-Phasic Porous Materials Based on Constant Q Fractional-Order BISQ Model.
    Hu N; Wang M; Qiu B; Tao Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Effects of CO
    Shang X; Wang J; Wang H; Wang X
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and analytic modelling of elastodynamic scattering within polycrystalline materials.
    Van Pamel A; Sha G; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2018 Apr; 143(4):2394. PubMed ID: 29716289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.