These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28764550)

  • 1. In situ multi-dimensional actuation measurement method for tensile actuation of paraffin-infiltrated multi-wall carbon nanotube yarns.
    Dang DX; Truong TK; Lim SC; Suh D
    Rev Sci Instrum; 2017 Jul; 88(7):075001. PubMed ID: 28764550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.
    Mirvakili SM; Hunter IW
    ACS Appl Mater Interfaces; 2017 May; 9(19):16321-16326. PubMed ID: 28447459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy.
    Kwon CH; Chun KY; Kim SH; Lee JH; Kim JH; Lima MD; Baughman RH; Kim SJ
    Nanoscale; 2015 Feb; 7(6):2489-96. PubMed ID: 25567113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems.
    Jang Y; Kim SM; Spinks GM; Kim SJ
    Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.
    Misak HE; Mall S
    J Nanosci Nanotechnol; 2016 Mar; 16(3):3021-5. PubMed ID: 27455753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles.
    Lima MD; Li N; Jung de Andrade M; Fang S; Oh J; Spinks GM; Kozlov ME; Haines CS; Suh D; Foroughi J; Kim SJ; Chen Y; Ware T; Shin MK; Machado LD; Fonseca AF; Madden JD; Voit WE; Galvão DS; Baughman RH
    Science; 2012 Nov; 338(6109):928-32. PubMed ID: 23161994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic torsional actuation of carbon nanotube yarn artificial muscle.
    Lee DW; Kim SH; Kozlov ME; Lepró X; Baughman RH; Kim SJ
    RSC Adv; 2018 May; 8(31):17421-17425. PubMed ID: 35539247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of carbon nanotube yarn during voltage application.
    Tokunaga T; Hayashi Y; Iijima T; Uesugi Y; Unten M; Sasaki K; Yamamoto T
    Micron; 2015 Jul; 74():30-4. PubMed ID: 25939086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption.
    Jin K; Zhang S; Zhou S; Qiao J; Song Y; Di J; Zhang D; Li Q
    Nanoscale; 2018 May; 10(17):8180-8186. PubMed ID: 29676416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydro-actuation of hybrid carbon nanotube yarn muscles.
    Gu X; Fan Q; Yang F; Cai L; Zhang N; Zhou W; Zhou W; Xie S
    Nanoscale; 2016 Oct; 8(41):17881-17886. PubMed ID: 27714203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Responsive Tensile Actuator Based on Multi-walled Carbon Nanotube Yarn.
    Kim H; Lee JA; Sim HJ; Lima MD; Baughman RH; Kim SJ
    Nanomicro Lett; 2016; 8(3):254-259. PubMed ID: 30460285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A predictive model of the tensile strength of twisted carbon nanotube yarns.
    Jeon SY; Jang J; Koo BW; Kim YW; Yu WR
    Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk.
    Chun KY; Hyeong Kim S; Kyoon Shin M; Hoon Kwon C; Park J; Tae Kim Y; Spinks GM; Lima MD; Haines CS; Baughman RH; Jeong Kim S
    Nat Commun; 2014; 5():3322. PubMed ID: 24557457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Photoactuator Based on Stiffness-Variable Carbon Nanotube Nanocomposite Yarn.
    Xu L; Peng Q; Zhao X; Li P; Xu J; He X
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40711-40718. PubMed ID: 32805842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators.
    Li Y; Shang Y; He X; Peng Q; Du S; Shi E; Wu S; Li Z; Li P; Cao A
    ACS Nano; 2013 Sep; 7(9):8128-35. PubMed ID: 23962111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery.
    Son W; Lee JM; Kim SH; Kim HW; Cho SB; Suh D; Chun S; Choi C
    Nano Lett; 2022 Mar; 22(6):2470-2478. PubMed ID: 35254078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.
    Misak HE; Sabelkin V; Miller L; Asmatulu R; Mall S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8331-9. PubMed ID: 24266232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance.
    Son W; Chun S; Lee JM; Jeon G; Sim HJ; Kim HW; Cho SB; Lee D; Park J; Jeon J; Suh D; Choi C
    ACS Nano; 2022 Feb; 16(2):2661-2671. PubMed ID: 35072453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.