These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28764550)

  • 21. Sealing-free fast-response paraffin/nanoporous gold hybrid actuator.
    Ye XL; Jin HJ
    Nanotechnology; 2017 Sep; 28(38):385501. PubMed ID: 28650845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Hydro-Actuation and Capacitance of Electrochemically Inner-Bundle-Activated Carbon Nanotube Yarns.
    Son W; Lee JM; Chun S; Yu S; Noh JH; Kim HW; Cho SB; Kim SJ; Choi C
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13484-13494. PubMed ID: 36855828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Torsional Photoactuators Based on MXene-Carbon Nanotube-Paraffin Wax Films.
    Ding J; Ma H; Xiao X; Li Q; Liu K; Zhang X
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57171-57179. PubMed ID: 36515685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum.
    Gigax JG; Bradford PD; Shao L
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.
    Beese AM; Wei X; Sarkar S; Ramachandramoorthy R; Roenbeck MR; Moravsky A; Ford M; Yavari F; Keane DT; Loutfy RO; Nguyen ST; Espinosa HD
    ACS Nano; 2014 Nov; 8(11):11454-66. PubMed ID: 25353651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knittable Electrochemical Yarn Muscle for Morphing Textiles.
    Wang X; Wang Y; Ren M; Dong L; Zhou T; Yang G; Yang H; Zhao Y; Cui B; Li Y; Li W; Yuan X; Qiao G; Wu Y; Wang X; Xu P; Di J
    ACS Nano; 2024 Apr; 18(13):9500-9510. PubMed ID: 38477715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing Carbon Nanotube Yarns via Infiltration Filling with Polyacrylonitrile in Supercritical Carbon Dioxide.
    Liu B; Hu Z; Sun Z; Yu M
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotube and graphene fiber artificial muscles.
    Foroughi J; Spinks G
    Nanoscale Adv; 2019 Dec; 1(12):4592-4614. PubMed ID: 36133125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tension-induced twist of twist-spun carbon nanotube yarns and its effect on their torsional behavior.
    Jeon SY; Kwon D; Yu WR
    Sci Rep; 2018 Apr; 8(1):6146. PubMed ID: 29670186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong and Robust Electrochemical Artificial Muscles by Ionic-Liquid-in-Nanofiber-Sheathed Carbon Nanotube Yarns.
    Ren M; Qiao J; Wang Y; Wu K; Dong L; Shen X; Zhang H; Yang W; Wu Y; Yong Z; Chen W; Zhang Y; Di J; Li Q
    Small; 2021 Feb; 17(5):e2006181. PubMed ID: 33432780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and process-dependent properties of solid-state spun carbon nanotube yarns.
    Fang S; Zhang M; Zakhidov AA; Baughman RH
    J Phys Condens Matter; 2010 Aug; 22(33):334221. PubMed ID: 21386511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible supercapacitor made of carbon nanotube yarn with internal pores.
    Choi C; Lee JA; Choi AY; Kim YT; Lepró X; Lima MD; Baughman RH; Kim SJ
    Adv Mater; 2014 Apr; 26(13):2059-65. PubMed ID: 24353070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. All-solid-state carbon nanotube torsional and tensile artificial muscles.
    Lee JA; Kim YT; Spinks GM; Suh D; Lepró X; Lima MD; Baughman RH; Kim SJ
    Nano Lett; 2014 May; 14(5):2664-9. PubMed ID: 24742031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scale and twist effects on the strength of nanostructured yarns and reinforced composites.
    Beyerlein IJ; Porwal PK; Zhu YT; Hu K; Xu XF
    Nanotechnology; 2009 Dec; 20(48):485702. PubMed ID: 19880980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-step process to improve the mechanical properties of carbon nanotube yarn.
    Evora MC; Lu X; Hiremath N; Kang NG; Hong K; Uribe R; Bhat G; Mays J
    Beilstein J Nanotechnol; 2018; 9():545-554. PubMed ID: 29527431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-Aware Artificial Coiled Yarn Muscles with Enhanced Electrical Conductivity and Durability via a Two-Step Process.
    Gong Y; Chen W; Li J; Zhao S; Ren L; Wang K; Li B
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.