These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28764550)

  • 41. Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle.
    Lee J; Ko S; Kwon CH; Lima MD; Baughman RH; Kim SJ
    Small; 2016 Apr; 12(15):2085-91. PubMed ID: 26929006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and p-type Doping Towards Large Thermoelectric Power Factor.
    Myint MTZ; Nishikawa T; Omoto K; Inoue H; Yamashita Y; Kyaw AKK; Hayashi Y
    Sci Rep; 2020 Apr; 10(1):7307. PubMed ID: 32350391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced energy harvester performance by a tension annealed carbon nanotube yarn at extreme temperatures.
    Hu X; Bao X; Wang J; Zhou X; Hu H; Wang L; Rajput S; Zhang Z; Yuan N; Cheng G; Ding J
    Nanoscale; 2022 Nov; 14(43):16185-16192. PubMed ID: 36278850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns.
    Kim KJ; Hyeon JS; Kim H; Mun TJ; Haines CS; Li N; Baughman RH; Kim SJ
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13533-13537. PubMed ID: 30924629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model for the strength of yarn-like carbon nanotube fibers.
    Vilatela JJ; Elliott JA; Windle AH
    ACS Nano; 2011 Mar; 5(3):1921-7. PubMed ID: 21348503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Power of Fiber Twist.
    Zhou X; Fang S; Leng X; Liu Z; Baughman RH
    Acc Chem Res; 2021 Jun; 54(11):2624-2636. PubMed ID: 33982565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MATLAB Algorithms for Diameter Measurements of Textile Yarns and Fibers through Image Processing Techniques.
    Abdelkader M
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn.
    Han M; Kim JK; Lee J; An HK; Yun JP; Kang SW; Jung D
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4011-4014. PubMed ID: 31968415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Photoelectric Conversion Yarn by Integrating Photomechanical Actuation and the Electrostatic Effect.
    Yu X; Pan J; Deng J; Zhou J; Sun X; Peng H
    Adv Mater; 2016 Dec; 28(48):10744-10749. PubMed ID: 27723129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deterministic Role of Carbon Nanotube-Substrate Coupling for Ultrahigh Actuation in Bilayer Electrothermal Actuators.
    Ghosh R; Telpande S; Gowda P; Reddy SK; Kumar P; Misra A
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29959-29970. PubMed ID: 32500702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical carbon nanotube composite yarn muscles.
    Song Y; Zhou S; Jin K; Qiao J; Li D; Xu C; Hu D; Di J; Li M; Zhang Z; Li Q
    Nanoscale; 2018 Feb; 10(8):4077-4084. PubMed ID: 29431840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications.
    Wei Y; Liu L; Liu P; Xiao L; Jiang K; Fan S
    Nanotechnology; 2008 Nov; 19(47):475707. PubMed ID: 21836288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn.
    Foroughi J; Spinks GM; Ghorbani SR; Kozlov ME; Safaei F; Peleckis G; Wallace GG; Baughman RH
    Nanoscale; 2012 Feb; 4(3):940-5. PubMed ID: 22173836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-Stroke Electrochemical Carbon Nanotube/Graphene Hybrid Yarn Muscles.
    Qiao J; Di J; Zhou S; Jin K; Zeng S; Li N; Fang S; Song Y; Li M; Baughman RH; Li Q
    Small; 2018 Sep; 14(38):e1801883. PubMed ID: 30152590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-Powered Coiled Carbon-Nanotube Yarn Sensor for Gastric Electronics.
    Jang Y; Kim SM; Kim KJ; Sim HJ; Kim BJ; Park JW; Baughman RH; Ruhparwar A; Kim SJ
    ACS Sens; 2019 Nov; 4(11):2893-2899. PubMed ID: 31525897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.