BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 28764713)

  • 1. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of Translated Frame-Based Approach for Forward Kinematics in a Radiosurgical Snake-Like Robot.
    Omisore OM; Han SP; Ren LX; Zhao ZC; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3669-3672. PubMed ID: 30441168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems.
    Omisore OM; Han S; Al-Handarish Y; Du W; Duan W; Akinyemi TO; Wang L
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Master-Slave control system with workspaces isomerism for teleoperation of a snake robot.
    Lingxue Ren ; Omisore OM; Shipeng Han ; Lei Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4343-4346. PubMed ID: 29060858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Concurrent Framework for Constrained Inverse Kinematics of Minimally Invasive Surgical Robots.
    Colan J; Davila A; Fozilov K; Hasegawa Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics Constraint Modeling for Flexible Robots based on Deep Learning
    Omisore OM; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4940-4943. PubMed ID: 34892316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant Surgical Manipulators.
    Zhang X; Fan B; Wang C; Cheng X
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion synthesis and force distribution analysis for a biped robot.
    Trojnacki MT; Zielińska T
    Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics.
    Santoso J; Onal CD
    Soft Robot; 2021 Aug; 8(4):371-386. PubMed ID: 32721270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic and Workspace Analysis of the Master Robot in the Sina
    Aghanouri M; Kheradmand P; Mousavi M; Moradi H; Mirbagheri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4777-4780. PubMed ID: 34892279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2012 Mar; 7(1):016005. PubMed ID: 22183033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-shaped rolling gait designed using curve transformations of a snake robot for climbing on a bifurcated pipe.
    Lu J; Tang C; Hu E; Li Z
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38507791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.