BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28764877)

  • 1. Conversion of finished leather waste incorporated with plant fibers into value added consumer products - An effort to minimize solid waste in Ethiopia.
    Teklay A; Gebeyehu G; Getachew T; Yaynshet T; Sastry TP
    Waste Manag; 2017 Oct; 68():45-55. PubMed ID: 28764877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan.
    Ocak B
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4643-4655. PubMed ID: 29197053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of Leather Waste Fibers in Polymer Matrix Composites Based on Acrylonitrile-Butadiene Rubber.
    Hang LT; Viet DQ; Linh NPD; Doan VA; Dang HT; Dao VD; Tuan PA
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leather solid waste: An eco-benign raw material for leather chemical preparation - A circular economy example.
    Sathish M; Madhan B; Raghava Rao J
    Waste Manag; 2019 Mar; 87():357-367. PubMed ID: 31109536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Properties of Ternary Composite from Waste Leather Fibers and Waste Polyamide Fibers with Acrylonitrile-Butadiene Rubber.
    Hang LT; Do QV; Hoang L; Nguyen LT; Linh NPD; Doan VA
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG; Abraham E; Jyotishkumar P; Maria HJ; Pothen LA; Thomas S
    Int J Biol Macromol; 2015 Nov; 81():768-77. PubMed ID: 26318667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.
    Przepiórkowska A; Chrońska K; Zaborski M
    J Hazard Mater; 2007 Mar; 141(1):252-7. PubMed ID: 16942836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of eco-friendly composite materials from natural animal fibers.
    Ali MF; Hossain MS; Ahmed S; Sarwaruddin Chowdhury AM
    Heliyon; 2021 May; 7(5):e06954. PubMed ID: 34027163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value added eco-friendly products from tannery solid wastes.
    Sastry TP; Sehgal RK; Ramasami T
    J Environ Sci Eng; 2005 Oct; 47(4):250-5. PubMed ID: 17051910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.
    Sudhakara P; Jagadeesh D; Wang Y; Prasad CV; Devi AP; Balakrishnan G; Kim BS; Song JI
    Carbohydr Polym; 2013 Oct; 98(1):1002-10. PubMed ID: 23987440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revalorization of cellulosic fiber extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications.
    Eryilmaz O
    Int J Biol Macromol; 2024 May; 266(Pt 1):131086. PubMed ID: 38521302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel complex coupling agent for enhancing the compatibility between collagen fiber and natural rubber: A utilization strategy for leather wastes.
    Li X; Lei C; Wan J; Xu W; Zhou J; Shi B
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130942. PubMed ID: 38493813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of Natural Rubber Latex Using Jute Carboxycellulose Nanofibers Extracted Using Nitro-Oxidation Method.
    Sharma SK; Sharma PR; Lin S; Chen H; Johnson K; Wang R; Borges W; Zhan C; Hsiao BS
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32276461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications.
    Thiagamani SMK; Nagarajan R; Jawaid M; Anumakonda V; Siengchin S
    Waste Manag; 2017 Nov; 69():445-454. PubMed ID: 28774586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green and sustainable 'Al-Zr-oligosaccharides' tanning agents from the simultaneous depolymerization and oxidation of waste paper.
    Gao M; Remón J; Ding W; Jiang Z; Shi B
    Sci Total Environ; 2022 Sep; 837():155570. PubMed ID: 35504371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials.
    Nair SS; Yan N
    Carbohydr Polym; 2015 Dec; 134():258-66. PubMed ID: 26428123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.
    Ulsido MD; Li M
    Waste Manag Res; 2016 Jul; 34(7):638-45. PubMed ID: 27091048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving characteristics of biochar produced from collagen-containing solid wastes based on protease application in leather production.
    Cao S; Song J; Li H; Wang K; Li Y; Li Y; Lu F; Liu B
    Waste Manag; 2020 Mar; 105():531-539. PubMed ID: 32146414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Waste
    Ovalı S
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675036
    [No Abstract]   [Full Text] [Related]  

  • 20. Basic forensic identification of artificial leather for hit-and-run cases.
    Sano T; Suzuki S
    Forensic Sci Int; 2009 Nov; 192(1-3):e27-32. PubMed ID: 19765924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.