BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28764957)

  • 1. An anisotropic multiphysics damage model with application to annulus fibrosus.
    Gao X; Zhu Q; Gu W
    J Biomech; 2017 Aug; 61():88-93. PubMed ID: 28764957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling multiaxial damage regional variation in human annulus fibrosus.
    Tamoud A; Zaïri F; Mesbah A; Zaïri F
    Acta Biomater; 2021 Dec; 136():375-388. PubMed ID: 34547514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the modeling of human intervertebral disc annulus fibrosus: Elastic, permanent deformation and failure responses.
    Ghezelbash F; Shirazi-Adl A; Baghani M; Eskandari AH
    J Biomech; 2020 Mar; 102():109463. PubMed ID: 31727375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic glycation increases the failure risk of annulus fibrosus by predisposing the extrafibrillar matrix to greater stresses.
    Zhou M; Archibeck ES; Feteih Y; Abubakr Y; O'Connell GD
    Acta Biomater; 2023 Sep; 168():223-234. PubMed ID: 37433360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks.
    Ghezelbash F; Eskandari AH; Shirazi-Adl A; Kazempour M; Tavakoli J; Baghani M; Costi JJ
    Acta Biomater; 2021 Mar; 123():208-221. PubMed ID: 33453409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear hyperelastic mixture theory model for anisotropy, transport, and swelling of annulus fibrosus.
    Sun DD; Leong KW
    Ann Biomed Eng; 2004 Jan; 32(1):92-102. PubMed ID: 14964725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of clinically relevant initiation and progression of tears within annulus fibrosus.
    Shahraki NM; Fatemi A; Agarwal A; Goel VK
    J Orthop Res; 2017 Jan; 35(1):113-122. PubMed ID: 27325391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlamellar-induced time-dependent response of intervertebral disc annulus: A microstructure-based chemo-viscoelastic model.
    Kandil K; Zaïri F; Derrouiche A; Messager T; Zaïri F
    Acta Biomater; 2019 Dec; 100():75-91. PubMed ID: 31586727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the failure precursor mechanism of lamellar fibrous tissues, example of the annulus fibrosus.
    Mengoni M; Jones AC; Wilcox RK
    J Mech Behav Biomed Mater; 2016 Oct; 63():265-272. PubMed ID: 27442918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber engagement accounts for geometry-dependent annulus fibrosus mechanics: A multiscale, Structure-Based Finite Element Study.
    Zhou M; Werbner B; O'Connell GD
    J Mech Behav Biomed Mater; 2021 Mar; 115():104292. PubMed ID: 33453608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional inhomogeneous triphasic finite-element analysis of physical signals and solute transport in human intervertebral disc under axial compression.
    Yao H; Gu WY
    J Biomech; 2007; 40(9):2071-7. PubMed ID: 17125776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression.
    Iatridis JC; Setton LA; Foster RJ; Rawlins BA; Weidenbaum M; Mow VC
    J Biomech; 1998 Jun; 31(6):535-44. PubMed ID: 9755038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous mechanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation: An experimental and numerical approach.
    Dusfour G; LeFloc'h S; Cañadas P; Ambard D
    J Mech Behav Biomed Mater; 2020 Apr; 104():103672. PubMed ID: 32174428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAG content, fiber stiffness, and fiber angle affect swelling-based residual stress in the intact annulus fibrosus.
    Yang B; O'Connell GD
    Biomech Model Mechanobiol; 2019 Jun; 18(3):617-630. PubMed ID: 30535612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach to Quantify Anisotropic Multiaxial Failure of the Annulus Fibrosus.
    Middendorf JM; Barocas VH
    J Biomech Eng; 2024 Jan; 146(1):. PubMed ID: 37851527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the impact of the course of hydration on the mechanical properties of the annulus fibrosus of the intervertebral disc.
    Żak M; Pezowicz C
    Eur Spine J; 2016 Sep; 25(9):2681-90. PubMed ID: 27412449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression.
    Demers S; Nadeau S; Bouzid AH
    J Biomech Eng; 2016 Apr; 138(4):041004. PubMed ID: 26833355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.