These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 28765163)
21. Epigenetic and Transcriptional Pre-patterning-An Emerging Theme in Cortical Neurogenesis. Albert M; Huttner WB Front Neurosci; 2018; 12():359. PubMed ID: 29896084 [TBL] [Abstract][Full Text] [Related]
22. Cross-species Analyses Unravel the Complexity of H3K27me3 and H4K20me3 in the Context of Neural Stem Progenitor Cells. Rhodes CT; Sandstrom RS; Huang SA; Wang Y; Schotta G; Berger MS; Lin CA Neuroepigenetics; 2016 Jun; 6():10-25. PubMed ID: 27429906 [TBL] [Abstract][Full Text] [Related]
23. Analysis of histone modifications in mouse neocortical neural progenitor-stem cells at various developmental stages. Tsuboi M; Gotoh Y STAR Protoc; 2021 Sep; 2(3):100763. PubMed ID: 34467231 [TBL] [Abstract][Full Text] [Related]
24. Glutaminolysis and the Control of Neural Progenitors in Neocortical Development and Evolution. Gkini V; Namba T Neuroscientist; 2023 Apr; 29(2):177-189. PubMed ID: 35057642 [TBL] [Abstract][Full Text] [Related]
25. Neural progenitor cells mediated by H2A.Z.2 regulate microglial development via Cxcl14 in the embryonic brain. Li Z; Li Y; Jiao J Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24122-24132. PubMed ID: 31712428 [TBL] [Abstract][Full Text] [Related]
26. Prdm16 is crucial for progression of the multipolar phase during neural differentiation of the developing neocortex. Inoue M; Iwai R; Tabata H; Konno D; Komabayashi-Suzuki M; Watanabe C; Iwanari H; Mochizuki Y; Hamakubo T; Matsuzaki F; Nagata KI; Mizutani KI Development; 2017 Feb; 144(3):385-399. PubMed ID: 27993981 [TBL] [Abstract][Full Text] [Related]
27. Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Yoon KJ; Vissers C; Ming GL; Song H J Cell Biol; 2018 Jun; 217(6):1901-1914. PubMed ID: 29666150 [TBL] [Abstract][Full Text] [Related]
28. Neocortical neurogenesis in development and evolution-Human-specific features. Huttner WB; Heide M; Mora-Bermúdez F; Namba T J Comp Neurol; 2024 Feb; 532(2):e25576. PubMed ID: 38189676 [TBL] [Abstract][Full Text] [Related]
29. Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7. Tavano S; Taverna E; Kalebic N; Haffner C; Namba T; Dahl A; Wilsch-Bräuninger M; Paridaen JTML; Huttner WB Neuron; 2018 Mar; 97(6):1299-1314.e8. PubMed ID: 29503187 [TBL] [Abstract][Full Text] [Related]
30. Histone Methylations Define Neural Stem/Progenitor Cell Subtypes in the Mouse Subventricular Zone. Zhang Z; Manaf A; Li Y; Perez SP; Suganthan R; Dahl JA; Bjørås M; Klungland A Mol Neurobiol; 2020 Feb; 57(2):997-1008. PubMed ID: 31654318 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Vaid S; Huttner WB Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610533 [TBL] [Abstract][Full Text] [Related]
32. Coupling progenitor and neuronal diversity in the developing neocortex. Govindan S; Jabaudon D FEBS Lett; 2017 Dec; 591(24):3960-3977. PubMed ID: 28895133 [TBL] [Abstract][Full Text] [Related]
33. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex. Kurabayashi N; Nguyen MD; Sanada K Development; 2013 Nov; 140(21):4335-46. PubMed ID: 24089469 [TBL] [Abstract][Full Text] [Related]
34. Human-specific Kalebic N; Gilardi C; Albert M; Namba T; Long KR; Kostic M; Langen B; Huttner WB Elife; 2018 Nov; 7():. PubMed ID: 30484771 [TBL] [Abstract][Full Text] [Related]
35. In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. Fujimura K; Mitsuhashi T; Shibata S; Shimozato S; Takahashi T J Neurosci; 2016 Oct; 36(42):10908-10919. PubMed ID: 27798144 [TBL] [Abstract][Full Text] [Related]
36. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture. Mizutani KI Genes Cells; 2018 Jan; 23(1):6-15. PubMed ID: 29193520 [TBL] [Abstract][Full Text] [Related]
37. Cooperation between the H3K27me3 Chromatin Mark and Non-CG Methylation in Epigenetic Regulation. Zhou S; Liu X; Zhou C; Zhou Q; Zhao Y; Li G; Zhou DX Plant Physiol; 2016 Oct; 172(2):1131-1141. PubMed ID: 27535791 [TBL] [Abstract][Full Text] [Related]
38. Dynamics of RNA Polymerase II Pausing and Bivalent Histone H3 Methylation during Neuronal Differentiation in Brain Development. Liu J; Wu X; Zhang H; Pfeifer GP; Lu Q Cell Rep; 2017 Aug; 20(6):1307-1318. PubMed ID: 28793256 [TBL] [Abstract][Full Text] [Related]
39. Profiling of DNA and histone methylation reveals epigenetic-based regulation of gene expression during retinal differentiation of stem/progenitor cells isolated from the ciliary pigment epithelium of human cadaveric eyes. Jasty S; Krishnakumar S Brain Res; 2016 Nov; 1651():1-10. PubMed ID: 27641993 [TBL] [Abstract][Full Text] [Related]