These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
647 related articles for article (PubMed ID: 28765271)
1. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Cui X; Yao L; Yang X; Gao Y; Fang F; Zhang J; Wang Q; Chang Y Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E493-E505. PubMed ID: 28765271 [TBL] [Abstract][Full Text] [Related]
2. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle. Shimoda Y; Matsuo K; Kitamura Y; Ono K; Ueyama T; Matoba S; Yamada H; Wu T; Chen J; Emoto N; Ikeda K PLoS One; 2015; 10(9):e0138624. PubMed ID: 26398569 [TBL] [Abstract][Full Text] [Related]
3. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. O'Neill HM; Holloway GP; Steinberg GR Mol Cell Endocrinol; 2013 Feb; 366(2):135-51. PubMed ID: 22750049 [TBL] [Abstract][Full Text] [Related]
4. Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Okamoto S; Asgar NF; Yokota S; Saito K; Minokoshi Y Metabolism; 2019 Jan; 90():52-68. PubMed ID: 30359677 [TBL] [Abstract][Full Text] [Related]
5. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise. Miotto PM; Steinberg GR; Holloway GP Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154 [TBL] [Abstract][Full Text] [Related]
6. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle. Ruby MA; Riedl I; Massart J; Åhlin M; Zierath JR Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E483-E491. PubMed ID: 28720584 [TBL] [Abstract][Full Text] [Related]
7. Tumor Necrosis Factor-α Promotes Phosphoinositide 3-Kinase Enhancer A and AMP-Activated Protein Kinase Interaction to Suppress Lipid Oxidation in Skeletal Muscle. Tse MCL; Herlea-Pana O; Brobst D; Yang X; Wood J; Hu X; Liu Z; Lee CW; Zaw AM; Chow BKC; Ye K; Chan CB Diabetes; 2017 Jul; 66(7):1858-1870. PubMed ID: 28404596 [TBL] [Abstract][Full Text] [Related]
8. Skeletal muscle AMP-activated protein kinase γ1(H151R) overexpression enhances whole body energy homeostasis and insulin sensitivity. Schönke M; Myers MG; Zierath JR; Björnholm M Am J Physiol Endocrinol Metab; 2015 Oct; 309(7):E679-90. PubMed ID: 26306597 [TBL] [Abstract][Full Text] [Related]
9. Sirt6 Suppresses High Glucose-Induced Mitochondrial Dysfunction and Apoptosis in Podocytes through AMPK Activation. Fan Y; Yang Q; Yang Y; Gao Z; Ma Y; Zhang L; Liang W; Ding G Int J Biol Sci; 2019; 15(3):701-713. PubMed ID: 30745856 [TBL] [Abstract][Full Text] [Related]
10. Skeletal muscle PI3K p110β regulates expression of AMP-activated protein kinase. Matheny RW; Abdalla MN; Geddis AV; Leandry LA; Lynch CM Biochem Biophys Res Commun; 2017 Jan; 482(4):1420-1426. PubMed ID: 27965101 [TBL] [Abstract][Full Text] [Related]
12. SCD1 regulates the AMPK/SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. Dziewulska A; Dobosz AM; Dobrzyn A; Smolinska A; Kolczynska K; Ntambi JM; Dobrzyn P J Cell Physiol; 2020 Feb; 235(2):1129-1140. PubMed ID: 31241768 [TBL] [Abstract][Full Text] [Related]
13. Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Banerjee J; Bruckbauer A; Zemel MB Metabolism; 2016 Nov; 65(11):1679-1691. PubMed ID: 27456392 [TBL] [Abstract][Full Text] [Related]
14. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Xin C; Liu J; Zhang J; Zhu D; Wang H; Xiong L; Lee Y; Ye J; Lian K; Xu C; Zhang L; Wang Q; Liu Y; Tao L Int J Obes (Lond); 2016 Mar; 40(3):443-51. PubMed ID: 26403433 [TBL] [Abstract][Full Text] [Related]
15. Perturbations of NAD Agerholm M; Dall M; Jensen BAH; Prats C; Madsen S; Basse AL; Graae AS; Risis S; Goldenbaum J; Quistorff B; Larsen S; Vienberg SG; Treebak JT Am J Physiol Endocrinol Metab; 2018 Apr; 314(4):E377-E395. PubMed ID: 29208611 [TBL] [Abstract][Full Text] [Related]
16. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle. Palacios-González B; Zarain-Herzberg A; Flores-Galicia I; Noriega LG; Alemán-Escondrillas G; Zariñan T; Ulloa-Aguirre A; Torres N; Tovar AR Biochim Biophys Acta; 2014 Jan; 1841(1):132-40. PubMed ID: 24013029 [TBL] [Abstract][Full Text] [Related]
17. Low molecular weight fucoidan improves endoplasmic reticulum stress-reduced insulin sensitivity through AMP-activated protein kinase activation in L6 myotubes and restores lipid homeostasis in a mouse model of type 2 diabetes. Jeong YT; Kim YD; Jung YM; Park DC; Lee DS; Ku SK; Li X; Lu Y; Chao GH; Kim KJ; Lee JY; Baek MC; Kang W; Hwang SL; Chang HW Mol Pharmacol; 2013 Jul; 84(1):147-57. PubMed ID: 23658008 [TBL] [Abstract][Full Text] [Related]
18. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. Hurtado E; Núñez-Álvarez Y; Muñoz M; Gutiérrez-Caballero C; Casas J; Pendás AM; Peinado MA; Suelves M FEBS J; 2021 Feb; 288(3):902-919. PubMed ID: 32563202 [TBL] [Abstract][Full Text] [Related]
19. AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. O'Neill HM; Maarbjerg SJ; Crane JD; Jeppesen J; Jørgensen SB; Schertzer JD; Shyroka O; Kiens B; van Denderen BJ; Tarnopolsky MA; Kemp BE; Richter EA; Steinberg GR Proc Natl Acad Sci U S A; 2011 Sep; 108(38):16092-7. PubMed ID: 21896769 [TBL] [Abstract][Full Text] [Related]
20. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Liu X; Niu Y; Yuan H; Huang J; Fu L Metabolism; 2015 Jun; 64(6):658-65. PubMed ID: 25672217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]