BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28765542)

  • 1. Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks.
    Sang X; Zhang J; Xiang J; Cui J; Zheng L; Zhang J; Wu Z; Li Z; Mo G; Xu Y; Song J; Liu C; Tan X; Luo T; Zhang B; Han B
    Nat Commun; 2017 Aug; 8(1):175. PubMed ID: 28765542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review.
    Liu Y; Liu X; Li M; Meng Y; Li J; Zhang Z; Zhang H
    Front Chem; 2021; 9():812331. PubMed ID: 34993179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.
    Song J; Zhou B; Zhou H; Wu L; Meng Q; Liu Z; Han B
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9399-403. PubMed ID: 26177726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Chemo-, Regio- and Stereoselective Reduction of Ketosteroids to Hydroxysteroids over Zr-Containing MOF-808 Metal-Organic Frameworks.
    Mautschke HH; Llabrés I Xamena FX
    Chemistry; 2021 Jul; 27(41):10766-10775. PubMed ID: 33998732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiO-66(Zr)-Type MOFs.
    Ragon F; Chevreau H; Devic T; Serre C; Horcajada P
    Chemistry; 2015 May; 21(19):7135-43. PubMed ID: 25788410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions.
    Wang Z; Xie C; Li X; Nie J; Yang H; Zhang Z
    Chem Commun (Camb); 2022 Mar; 58(25):4067-4070. PubMed ID: 35262544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals.
    Schaate A; Roy P; Godt A; Lippke J; Waltz F; Wiebcke M; Behrens P
    Chemistry; 2011 Jun; 17(24):6643-51. PubMed ID: 21547962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Reduction Nucleation of Noble Metal Nanodots on Redox-Active Metal-Organic Frameworks for High-Efficiency Electrocatalytic Conversion of Nitrate to Ammonia.
    Jiang M; Su J; Song X; Zhang P; Zhu M; Qin L; Tie Z; Zuo JL; Jin Z
    Nano Lett; 2022 Mar; 22(6):2529-2537. PubMed ID: 35266387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Organic Layers Catalyze Photoreactions without Pore Size and Diffusion Limitations.
    Xu R; Drake T; Lan G; Lin W
    Chemistry; 2018 Oct; 24(59):15772-15776. PubMed ID: 30016566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks.
    Plonka AM; Wang Q; Gordon WO; Balboa A; Troya D; Guo W; Sharp CH; Senanayake SD; Morris JR; Hill CL; Frenkel AI
    J Am Chem Soc; 2017 Jan; 139(2):599-602. PubMed ID: 28038315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing growth of metal-organic frameworks with X-ray scattering and vibrational spectroscopy.
    Lu W; Zhang E; Qian J; Weeraratna C; Jackson MN; Zhu C; Long JR; Ahmed M
    Phys Chem Chem Phys; 2022 Nov; 24(42):26102-26110. PubMed ID: 36274571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zr-Metal-Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols.
    Zhuang JL; Liu XY; Zhang Y; Wang C; Mao HL; Guo J; Du X; Zhu SB; Ren B; Terfort A
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3034-3043. PubMed ID: 30585485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of Mesoporous Metal-Organic Framework Templated by an Ionic Liquid/Ethylene Glycol Interface.
    Sang X; Zhang J; Peng L; Liu C; Ma X; Han B; Yang G
    Chemphyschem; 2015 Aug; 16(11):2317-21. PubMed ID: 25982756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zr-TUD-1: a Lewis acidic, three-dimensional, mesoporous, zirconium-containing catalyst.
    Ramanathan A; Castro Villalobos MC; Kwakernaak C; Telalovic S; Hanefeld U
    Chemistry; 2008; 14(3):961-72. PubMed ID: 17992668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Catalytic Performance of Metal-Organic Framework by Increasing the Defects via a Facile and Green Approach.
    Ye G; Zhang D; Li X; Leng K; Zhang W; Ma J; Sun Y; Xu W; Ma S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34937-34943. PubMed ID: 28920674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic-Liquid-Functionalized UiO-66 Framework: An Experimental and Theoretical Study on the Cycloaddition of CO
    Kurisingal JF; Rachuri Y; Pillai RS; Gu Y; Choe Y; Park DW
    ChemSusChem; 2019 Mar; 12(5):1033-1042. PubMed ID: 30610753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing Crystallisation Kinetics of Zr Metal-Organic Frameworks through Turbidity Measurements to Inform Rapid Microwave-Assisted Synthesis.
    Griffin SL; Briuglia ML; Ter Horst JH; Forgan RS
    Chemistry; 2020 May; 26(30):6910-6918. PubMed ID: 32227534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ X-ray Diffraction Investigation of the Crystallisation of Perfluorinated Ce
    Shearan SJI; Jacobsen J; Costantino F; D'Amato R; Novikov D; Stock N; Andreoli E; Taddei M
    Chemistry; 2021 Apr; 27(21):6579-6592. PubMed ID: 33480453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal-Organic Frameworks.
    Yeung HH; Wu Y; Henke S; Cheetham AK; O'Hare D; Walton RI
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2012-6. PubMed ID: 26836335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.