These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28765553)
1. Order-disorder transition in active nematic: A lattice model study. Das R; Kumar M; Mishra S Sci Rep; 2017 Aug; 7(1):7080. PubMed ID: 28765553 [TBL] [Abstract][Full Text] [Related]
2. Activity-induced phase transition and coarsening dynamics in dry apolar active nematics. Sinha A; Chaudhuri D Soft Matter; 2024 Oct; 20(40):8078-8088. PubMed ID: 39355944 [TBL] [Abstract][Full Text] [Related]
3. The nematic-isotropic transition of the Lebwohl-Lasher model revisited. Skačej G; Zannoni C Philos Trans A Math Phys Eng Sci; 2021 Jul; 379(2201):20200117. PubMed ID: 34024130 [TBL] [Abstract][Full Text] [Related]
4. Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice. Gschwind A; Klopotek M; Ai Y; Oettel M Phys Rev E; 2017 Jul; 96(1-1):012104. PubMed ID: 29347067 [TBL] [Abstract][Full Text] [Related]
5. Power law relaxation and glassy dynamics in Lebwohl-Lasher model near the isotropic-nematic phase transition. Chakrabarty S; Chakrabarti D; Bagchi B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061706. PubMed ID: 16906848 [TBL] [Abstract][Full Text] [Related]
6. Isotropic-nematic phase transition in the Lebwohl-Lasher model from density of states simulations. Shekhar R; Whitmer JK; Malshe R; Moreno-Razo JA; Roberts TF; de Pablo JJ J Chem Phys; 2012 Jun; 136(23):234503. PubMed ID: 22779602 [TBL] [Abstract][Full Text] [Related]
7. Structure and phase diagram of self-assembled rigid rods: equilibrium polydispersity and nematic ordering in two dimensions. Tavares JM; Holder B; Telo da Gama MM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021505. PubMed ID: 19391753 [TBL] [Abstract][Full Text] [Related]
8. Early stage domain coarsening of the isotropic-nematic phase transition. Bradač Z; Kralj S; Žumer S J Chem Phys; 2011 Jul; 135(2):024506. PubMed ID: 21766956 [TBL] [Abstract][Full Text] [Related]
9. Multiscale approach to nematic liquid crystals via statistical field theory. Lu BS Phys Rev E; 2017 Aug; 96(2-1):022709. PubMed ID: 28950485 [TBL] [Abstract][Full Text] [Related]
10. Computational studies of history dependence in nematic liquid crystals in random environments. Ranjkesh A; Ambrožič M; Kralj S; Sluckin TJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022504. PubMed ID: 25353486 [TBL] [Abstract][Full Text] [Related]
11. Competition between local disordering and global ordering fields in nematic liquid crystals. Cvetko M; Ambrozic M; Kralj S Beilstein J Org Chem; 2010 Jan; 6():2. PubMed ID: 20502609 [TBL] [Abstract][Full Text] [Related]
12. Phase behavior of the generalized chiral Lebwohl-Lasher model in bulk and confinement. Elsässer P; Kuhnhold A Phys Rev E; 2022 May; 105(5-1):054704. PubMed ID: 35706156 [TBL] [Abstract][Full Text] [Related]
13. Disclination loop behavior near the nematic-isotropic transition. Priezjev NV; Pelcovits RA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031710. PubMed ID: 11580358 [TBL] [Abstract][Full Text] [Related]
14. Nematic ordering in the Heisenberg spin-glass system in three dimensions. Tunca E; Berker AN Phys Rev E; 2023 Jan; 107(1-1):014116. PubMed ID: 36797935 [TBL] [Abstract][Full Text] [Related]
15. Computer simulation study of the phase behavior of a nematogenic lattice-gas model. Bates MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051702. PubMed ID: 11735940 [TBL] [Abstract][Full Text] [Related]
16. Self-regulation in self-propelled nematic fluids. Baskaran A; Marchetti MC Eur Phys J E Soft Matter; 2012 Sep; 35(9):95. PubMed ID: 23053844 [TBL] [Abstract][Full Text] [Related]
17. Lattice Monte Carlo study of orientational order in a confined system of biaxial particles: Effect of an external electric field. Casquilho JP; Figueirinhas JL Phys Rev E; 2021 Mar; 103(3-1):032701. PubMed ID: 33862747 [TBL] [Abstract][Full Text] [Related]
18. Wang-Landau Monte Carlo simulation of isotropic-nematic transition in liquid crystals. Jayasri D; Sastry VS; Murthy KP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036702. PubMed ID: 16241609 [TBL] [Abstract][Full Text] [Related]
19. Phase behavior of the confined Lebwohl-Lasher model. Almarza NG; Martín C; Lomba E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011140. PubMed ID: 20866598 [TBL] [Abstract][Full Text] [Related]
20. Symmetry breaking and structure of a mixture of nematic liquid crystals and anisotropic nanoparticles. Krasna M; Cvetko M; Ambrozic M Beilstein J Org Chem; 2010 Jul; 6():. PubMed ID: 20703373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]