These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28765594)

  • 1. Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.
    Riaz B; Pfeiffer C; Schneiderman JF
    Sci Rep; 2017 Aug; 7(1):6974. PubMed ID: 28765594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
    Pfeiffer C; Andersen LM; Lundqvist D; Hämäläinen M; Schneiderman JF; Oostenveld R
    PLoS One; 2018; 13(5):e0191111. PubMed ID: 29746486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the limits of MEG spatial resolution with multipolar expansions.
    Wens V
    Neuroimage; 2023 Apr; 270():119953. PubMed ID: 36842521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking for On-Scalp MEG Sensors.
    Xie M; Schneiderman JF; Chukharkin ML; Kalabukhov A; Riaz B; Lundqvist D; Whitmarsh S; Hamalainen M; Jousmaki V; Oostenveld R; Winkler D
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1270-1276. PubMed ID: 28541190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for Coregistration Accuracy in On-Scalp MEG.
    Zetter R; Iivanainen J; Stenroos M; Parkkonen L
    Brain Topogr; 2018 Nov; 31(6):931-948. PubMed ID: 29934728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers.
    Iivanainen J; Zetter R; Grön M; Hakkarainen K; Parkkonen L
    Neuroimage; 2019 Jul; 194():244-258. PubMed ID: 30885786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yttrium-Iron Garnet Magnetometer in MEG: Advance towards Multi-Channel Arrays.
    Skidchenko E; Butorina A; Ostras M; Vetoshko P; Kuzmichev A; Yavich N; Malovichko M; Koshev N
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays.
    Iivanainen J; Stenroos M; Parkkonen L
    Neuroimage; 2017 Feb; 147():542-553. PubMed ID: 28007515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration.
    Pfeiffer C; Ruffieux S; Andersen LM; Kalabukhov A; Winkler D; Oostenveld R; Lundqvist D; Schneiderman JF
    Neuroimage; 2020 May; 212():116686. PubMed ID: 32119981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 7-Channel High-[Formula: see text] SQUID-Based On-Scalp MEG System.
    Pfeiffer C; Ruffieux S; Jonsson L; Chukharkin ML; Kalaboukhov A; Xie M; Winkler D; Schneiderman JF
    IEEE Trans Biomed Eng; 2020 May; 67(5):1483-1489. PubMed ID: 31484107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic coregistration of MRI and on-scalp MEG.
    Gu W; Ru X; Li D; He K; Cui Y; Sheng J; Gao JH
    J Neurosci Methods; 2021 Jul; 358():109181. PubMed ID: 33836172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of on-scalp MEG: Robust detection of human visual gamma-band responses.
    Iivanainen J; Zetter R; Parkkonen L
    Hum Brain Mapp; 2020 Jan; 41(1):150-161. PubMed ID: 31571310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor array design of optically pumped magnetometers for accurately estimating source currents.
    Takeda Y; Gomi T; Umebayashi R; Tomita S; Suzuki K; Hiroe N; Saikawa J; Munaka T; Yamashita O
    Neuroimage; 2023 Aug; 277():120257. PubMed ID: 37392806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information content with low- vs. high-T(c) SQUID arrays in MEG recordings: the case for high-T(c) SQUID-based MEG.
    Schneiderman JF
    J Neurosci Methods; 2014 Jan; 222():42-6. PubMed ID: 24184856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-scalp MEG SQUIDs are sensitive to early somatosensory activity unseen by conventional MEG.
    Andersen LM; Pfeiffer C; Ruffieux S; Riaz B; Winkler D; Schneiderman JF; Lundqvist D
    Neuroimage; 2020 Nov; 221():117157. PubMed ID: 32659354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Scalp Optically Pumped Magnetometers versus Cryogenic Magnetoencephalography for Diagnostic Evaluation of Epilepsy in School-aged Children.
    Feys O; Corvilain P; Aeby A; Sculier C; Holmes N; Brookes M; Goldman S; Wens V; De Tiège X
    Radiology; 2022 Aug; 304(2):429-434. PubMed ID: 35503013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors.
    Kanno A; Nakasato N; Oogane M; Fujiwara K; Nakano T; Arimoto T; Matsuzaki H; Ando Y
    Sci Rep; 2022 Apr; 12(1):6106. PubMed ID: 35414691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Co-registration of MRI and On-scalp MEG.
    Zetter R; Iivanainen J; Parkkonen L
    Sci Rep; 2019 Apr; 9(1):5490. PubMed ID: 30940844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and analysis of MEG signals in occipital region with double-channel OPM sensors.
    Zhang X; Chen CQ; Zhang MK; Ma CY; Zhang Y; Wang H; Guo QQ; Hu T; Liu ZB; Chang Y; Hu KJ; Yang XD
    J Neurosci Methods; 2020 Dec; 346():108948. PubMed ID: 32950554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming and comparing data between standard SQUID and OPM-MEG systems.
    Marhl U; Jodko-Władzińska A; Brühl R; Sander T; Jazbinšek V
    PLoS One; 2022; 17(1):e0262669. PubMed ID: 35045107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.