These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28765986)

  • 1. A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem.
    Zhang J; Shi J; Chang X
    J Math Biol; 2018 Apr; 76(5):1159-1193. PubMed ID: 28765986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: implications for the restoration of eutrophic shallow lakes.
    Zhang X; Liu Z; Jeppesen E; Taylor WD
    Water Res; 2014 Mar; 50():135-46. PubMed ID: 24370657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment.
    Jäger CG; Hagemann J; Borchardt D
    Water Res; 2017 May; 115():162-171. PubMed ID: 28279937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal patterns and response lengths of algae in riverine ecosystems: A model analysis emphasising benthic-pelagic interactions.
    Jäger CG; Borchardt D
    J Theor Biol; 2018 Apr; 442():66-78. PubMed ID: 29337262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress.
    Havens KE; Hauxwell J; Tyler AC; Thomas S; McGlathery KJ; Cebrian J; Valiela I; Steinman AD; Hwang SJ
    Environ Pollut; 2001; 113(1):95-107. PubMed ID: 11351765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetrical competition between aquatic primary producers in a warmer and browner world.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Ecology; 2016 Oct; 97(10):2580-2592. PubMed ID: 27859128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbivorous snails can increase water clarity by stimulating growth of benthic algae.
    Zhang X; Taylor WD; Rudstam LG
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24698-24707. PubMed ID: 28913753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study.
    Zhang X; Mei X; Gulati RD; Liu Z
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4418-24. PubMed ID: 25304240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A shady phytoplankton paradox: when phytoplankton increases under low light.
    Yamamichi M; Kazama T; Tokita K; Katano I; Doi H; Yoshida T; Hairston NG; Urabe J
    Proc Biol Sci; 2018 Jul; 285(1882):. PubMed ID: 30051833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of benthic microalgae to the temporal variation in phytoplankton assemblages in a macrotidal system.
    Hernández Fariñas T; Ribeiro L; Soudant D; Belin C; Bacher C; Lampert L; Barillé L
    J Phycol; 2017 Oct; 53(5):1020-1034. PubMed ID: 28707731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of light on the growth of non-nitrogen-fixing and nitrogen-fixing phytoplankton in an aquatic system.
    Wolkowicz GS; Yuan Y
    J Math Biol; 2016 May; 72(6):1663-92. PubMed ID: 26316327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.
    Brothers S; Vadeboncoeur Y; Sibley P
    Glob Chang Biol; 2016 Dec; 22(12):3865-3873. PubMed ID: 27029572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen as the main driver of benthic diatom composition and diversity in oligotrophic coastal systems.
    Kafouris S; Smeti E; Spatharis S; Tsirtsis G; Economou-Amilli A; Danielidis DB
    Sci Total Environ; 2019 Dec; 694():133773. PubMed ID: 31756832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.
    He H; Hu E; Yu J; Luo X; Li K; Jeppesen E; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):5012-5018. PubMed ID: 28000069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural nutrient enrichment and algal responses in near pristine micro-estuaries and micro-outlets.
    Human LRD; Magoro ML; Dalu T; Perissinotto R; Whitfield AK; Adams JB; Deyzel SHP; Rishworth GM
    Sci Total Environ; 2018 May; 624():945-954. PubMed ID: 29275257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How green is my river? A new paradigm of eutrophication in rivers.
    Hilton J; O'Hare M; Bowes MJ; Jones JI
    Sci Total Environ; 2006 Jul; 365(1-3):66-83. PubMed ID: 16643991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent spatial patterns of competing benthic and pelagic algae in a river network: A parsimonious basin-scale modeling analysis.
    Yang S; Bertuzzo E; Büttner O; Borchardt D; Rao PSC
    Water Res; 2021 Apr; 193():116887. PubMed ID: 33582496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching Harmful Algal Blooms to Submerged Macrophytes in Shallow Waters Using Geo-engineering Methods: Evidence from a
    Zhang H; Shang Y; Lyu T; Chen J; Pan G
    Environ Sci Technol; 2018 Oct; 52(20):11778-11785. PubMed ID: 30207712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient dynamics of pelagic producer-grazer systems in a gradient of nutrients and mixing depths.
    Jäger CG; Diehl S; Matauschek C; Klausmeier CA; Stibor H
    Ecology; 2008 May; 89(5):1272-86. PubMed ID: 18543621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.