BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28766028)

  • 1. A Hybrid 2D/3D User Interface for Radiological Diagnosis.
    Mandalika VBH; Chernoglazov AI; Billinghurst M; Bartneck C; Hurrell MA; Ruiter N; Butler APH; Butler PH
    J Digit Imaging; 2018 Feb; 31(1):56-73. PubMed ID: 28766028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.
    Messier E; Wilcox J; Dawson-Elli A; Diaz G; Linte CA
    Stud Health Technol Inform; 2016; 220():233-40. PubMed ID: 27046584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules.
    Ammanuel S; Brown I; Uribe J; Rehani B
    J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized 2D/3D optical mapping for interactive exploration and real-time visualization of multi-function neurological images.
    Zhang Q; Alexander M; Ryner L
    Comput Med Imaging Graph; 2013; 37(7-8):552-67. PubMed ID: 23968722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereo 3D mouse (S3D-Mouse): measuring ground truth for medical data in a virtual 3D space.
    Azari H; Cheng I; Basu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5744-7. PubMed ID: 19963649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface.
    Sun S; Sonka M; Beichel RR
    Comput Med Imaging Graph; 2013 Jan; 37(1):15-27. PubMed ID: 23415254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplifying the exploration of volumetric images: development of a 3D user interface for the radiologist's workplace.
    Teistler M; Breiman RS; Lison T; Bott OJ; Pretschner DP; Aziz A; Nowinski WL
    J Digit Imaging; 2008 Oct; 21 Suppl 1(Suppl 1):S2-12. PubMed ID: 17387555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface.
    Lopes DS; Parreira PDF; Paulo SF; Nunes V; Rego PA; Neves MC; Rodrigues PS; Jorge JA
    J Biomed Inform; 2017 Aug; 72():140-149. PubMed ID: 28720438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoscopic neuroanatomy lectures using a three-dimensional virtual reality environment.
    Kockro RA; Amaxopoulou C; Killeen T; Wagner W; Reisch R; Schwandt E; Gutenberg A; Giese A; Stofft E; Stadie AT
    Ann Anat; 2015 Sep; 201():91-8. PubMed ID: 26245861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liver surgery planning using virtual reality.
    Reitinger B; Bornik A; Beichel R; Schmalstieg D
    IEEE Comput Graph Appl; 2006; 26(6):36-47. PubMed ID: 17120912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of existing and potential computer user interfaces for modern radiology.
    Iannessi A; Marcy PY; Clatz O; Bertrand AS; Sugimoto M
    Insights Imaging; 2018 Aug; 9(4):599-609. PubMed ID: 29770927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?
    Bach B; Sicat R; Beyer J; Cordeil M; Pfister H
    IEEE Trans Vis Comput Graph; 2018 Jan; 24(1):457-467. PubMed ID: 28866590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction.
    Van Hemelen G; Van Genechten M; Renier L; Desmedt M; Verbruggen E; Nadjmi N
    J Craniomaxillofac Surg; 2015 Jul; 43(6):918-25. PubMed ID: 26027866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.
    Xin P; Yu H; Cheng H; Shen S; Shen SG
    J Craniofac Surg; 2013 Sep; 24(5):1573-6. PubMed ID: 24036729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization task performance with 2D, 3D, and combination displays.
    Tory M; Kirkpatrick AE; Atkins MS; Möller T
    IEEE Trans Vis Comput Graph; 2006; 12(1):2-13. PubMed ID: 16382603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Informatics in radiology: Intuitive user interface for 3D image manipulation using augmented reality and a smartphone as a remote control.
    Nakata N; Suzuki N; Hattori A; Hirai N; Miyamoto Y; Fukuda K
    Radiographics; 2012; 32(4):E169-74. PubMed ID: 22556316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.
    Somoskeöy S; Tunyogi-Csapó M; Bogyó C; Illés T
    Spine J; 2012 Oct; 12(10):960-8. PubMed ID: 23018164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of real-time 3D visualization for cardiothoracic diagnostic evaluation and surgery planning.
    Hemminger BM; Molina PL; Egan TM; Detterbeck FC; Muller KE; Coffey CS; Lee JK
    J Digit Imaging; 2005 Jun; 18(2):145-53. PubMed ID: 15827827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays.
    Dan A; Reiner M
    Int J Psychophysiol; 2017 Dec; 122():75-84. PubMed ID: 27592084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.