These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 28766111)
1. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. Senturk AE; Oktem AS; Konukman AES J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111 [TBL] [Abstract][Full Text] [Related]
2. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. Senturk AE; Oktem AS; Konukman AES J Mol Model; 2018 Jan; 24(2):43. PubMed ID: 29352756 [TBL] [Abstract][Full Text] [Related]
3. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Yeo JJ; Liu Z; Ng TY Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664 [TBL] [Abstract][Full Text] [Related]
4. Effect of Stone-Wales defects on the thermal conductivity of graphene. Krasavin SE; Osipov VA J Phys Condens Matter; 2015 Oct; 27(42):425302. PubMed ID: 26436425 [TBL] [Abstract][Full Text] [Related]
5. Improving gas sensing properties of armchair graphene nanoribbons by oxygen-hydrogen terminated edges. Jamalzadeh Kheirabadi S; Ghayour R; Sanaee M Nanotechnology; 2019 Oct; 30(43):435501. PubMed ID: 31300615 [TBL] [Abstract][Full Text] [Related]
6. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures. Ryou J; Park J; Kim G; Hong S J Phys Condens Matter; 2017 Jun; 29(24):245301. PubMed ID: 28443604 [TBL] [Abstract][Full Text] [Related]
7. Structural transformations of graphene exposed to nitrogen plasma: quantum chemical molecular dynamics simulations. Moon S; Hijikata Y; Irle S Phys Chem Chem Phys; 2019 Jun; 21(23):12112-12120. PubMed ID: 30888388 [TBL] [Abstract][Full Text] [Related]
8. Computational study of precision nitrogen doping on graphene nanoribbon edges. Dong Y; Gahl MT; Zhang C; Lin J Nanotechnology; 2017 Dec; 28(50):505602. PubMed ID: 29087366 [TBL] [Abstract][Full Text] [Related]
9. Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene - a density-functional study. Yutomo EB; Noor FA; Winata T RSC Adv; 2021 May; 11(30):18371-18380. PubMed ID: 35480933 [TBL] [Abstract][Full Text] [Related]
10. Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects. Chen W; Li Y; Yu G; Zhou Z; Chen Z J Chem Theory Comput; 2009 Nov; 5(11):3088-95. PubMed ID: 26609988 [TBL] [Abstract][Full Text] [Related]
11. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Zhan C; Zhang Y; Cummings PT; Jiang DE Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824 [TBL] [Abstract][Full Text] [Related]
12. The effects of Stone-Wales defects on the thermal properties of bilayer armchair graphene nanoribbons. Zhang X; Zhang J; Yang M RSC Adv; 2020 May; 10(33):19254-19257. PubMed ID: 35515457 [TBL] [Abstract][Full Text] [Related]
13. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons. Owens JR; Cruz-Silva E; Meunier V Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134 [TBL] [Abstract][Full Text] [Related]
14. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene. Lee BS J Phys Condens Matter; 2018 Jul; 30(29):295302. PubMed ID: 29873305 [TBL] [Abstract][Full Text] [Related]
15. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion. Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780 [TBL] [Abstract][Full Text] [Related]
16. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons. Ajeel FN; Ahmed AB J Mol Model; 2023 Apr; 29(5):145. PubMed ID: 37067639 [TBL] [Abstract][Full Text] [Related]
17. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Hu J; Ruan X; Chen YP Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898 [TBL] [Abstract][Full Text] [Related]
18. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440 [TBL] [Abstract][Full Text] [Related]