BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28766328)

  • 1. Phosphate-Imposed Constraints on Schwertmannite Stability under Reducing Conditions.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Environ Sci Technol; 2017 Sep; 51(17):9739-9746. PubMed ID: 28766328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation.
    Gao K; Hu Y; Guo C; Ke C; He C; Hao X; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2020 Oct; 202():110921. PubMed ID: 32800256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material.
    Vithana CL; Sullivan LA; Shepherd T
    Water Res; 2017 Nov; 124():1-10. PubMed ID: 28734957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms.
    Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z
    J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of arsenic(V) and arsenic(III) to schwertmannite.
    Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK
    Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite.
    Choppala G; Burton ED
    PLoS One; 2018; 13(12):e0208355. PubMed ID: 30517205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite.
    Li J; Xie Y; Lu G; Ye H; Yi X; Reinfelder JR; Lin Z; Dang Z
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15492-15506. PubMed ID: 29569199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite.
    Choppala G; Karimian N; Burton ED
    J Hazard Mater; 2022 Jun; 431():128580. PubMed ID: 35359110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox stability of As(III) on schwertmannite surfaces.
    Paikaray S; Essilfie-Dughan J; Göttlicher J; Pollok K; Peiffer S
    J Hazard Mater; 2014 Jan; 265():208-16. PubMed ID: 24361800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms.
    Xie Y; Ye H; Wen Z; Dang Z; Lu G
    Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimony(V) Incorporation into Schwertmannite: Critical Insights on Antimony Retention in Acidic Environments.
    Rastegari M; Karimian N; Johnston SG; Doherty SJ; Hamilton JL; Choppala G; Hosseinpour Moghaddam M; Burton ED
    Environ Sci Technol; 2022 Dec; 56(24):17776-17784. PubMed ID: 36445713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2.
    Wang WM; Song J; Han X
    J Hazard Mater; 2013 Nov; 262():412-9. PubMed ID: 24076478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.