These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 28766340)
1. Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries. Giordano L; Karayaylali P; Yu Y; Katayama Y; Maglia F; Lux S; Shao-Horn Y J Phys Chem Lett; 2017 Aug; 8(16):3881-3887. PubMed ID: 28766340 [TBL] [Abstract][Full Text] [Related]
2. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927 [TBL] [Abstract][Full Text] [Related]
3. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
4. Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes. Freiberg ATS; Roos MK; Wandt J; de Vivie-Riedle R; Gasteiger HA J Phys Chem A; 2018 Nov; 122(45):8828-8839. PubMed ID: 30354136 [TBL] [Abstract][Full Text] [Related]
5. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Sassin MB; Chervin CN; Rolison DR; Long JW Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783 [TBL] [Abstract][Full Text] [Related]
6. Surface Oxygen Depletion of Layered Transition Metal Oxides in Li-Ion Batteries Studied by Freiberg ATS; Qian S; Wandt J; Gasteiger HA; Crumlin EJ ACS Appl Mater Interfaces; 2023 Jan; 15(3):4743-4754. PubMed ID: 36623251 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity. Tatara R; Yu Y; Karayaylali P; Chan AK; Zhang Y; Jung R; Maglia F; Giordano L; Shao-Horn Y ACS Appl Mater Interfaces; 2019 Sep; 11(38):34973-34988. PubMed ID: 31433154 [TBL] [Abstract][Full Text] [Related]
8. Structure sensitivity in the decomposition of ethylene carbonate on Si anodes. Rohrer J; Kaghazchi P Chemphyschem; 2014 Dec; 15(18):3950-4. PubMed ID: 25251145 [TBL] [Abstract][Full Text] [Related]
9. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
10. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer. Morioka T; Nakano K; Tominaga Y Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28221711 [TBL] [Abstract][Full Text] [Related]
11. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
12. Theoretical Prediction of Surface Stability and Morphology of LiNiO Cho E; Seo SW; Min K ACS Appl Mater Interfaces; 2017 Sep; 9(38):33257-33266. PubMed ID: 28895392 [TBL] [Abstract][Full Text] [Related]
13. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288 [TBL] [Abstract][Full Text] [Related]
14. Electrolyte decomposition on Li-metal surfaces from first-principles theory. Ebadi M; Brandell D; Araujo CM J Chem Phys; 2016 Nov; 145(20):204701. PubMed ID: 27908145 [TBL] [Abstract][Full Text] [Related]
15. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
16. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
17. Rivalry at the Interface: Ion Desolvation and Electrolyte Degradation in Model Ethylene Carbonate Complexes of Li Rasheev H; Stoyanova R; Tadjer A ACS Omega; 2021 Nov; 6(44):29735-29745. PubMed ID: 34778645 [TBL] [Abstract][Full Text] [Related]
18. Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes. Tartaj P; Amarilla JM; Morales E; Vazquez-Santos MB ACS Appl Mater Interfaces; 2016 Jan; 8(3):2132-41. PubMed ID: 26743032 [TBL] [Abstract][Full Text] [Related]
19. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. Gauthier M; Carney TJ; Grimaud A; Giordano L; Pour N; Chang HH; Fenning DP; Lux SF; Paschos O; Bauer C; Maglia F; Lupart S; Lamp P; Shao-Horn Y J Phys Chem Lett; 2015 Nov; 6(22):4653-72. PubMed ID: 26510477 [TBL] [Abstract][Full Text] [Related]
20. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]