These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28766660)

  • 1. The spatial arrangement of a single nanoparticle in a thin polymer film and its effect on the nanoparticle diffusion.
    Im H; Oh Y; Cho HW; Kim J; Paeng K; Sung BJ
    Soft Matter; 2017 Sep; 13(35):5897-5904. PubMed ID: 28766660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Dependence of Non-Gaussian Diffusion of Nanoparticles in Free-Standing Thin Polymer Films.
    Jung J; Kwon T; Oh Y; Lee YR; Sung BJ
    J Phys Chem B; 2019 Oct; 123(43):9250-9259. PubMed ID: 31589036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study on the glass transition behavior and relevant segmental dynamics in free-standing polymer nanocomposite films.
    Li SJ; Qian HJ; Lu ZY
    Soft Matter; 2019 Jun; 15(22):4476-4485. PubMed ID: 31111851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014902. PubMed ID: 19586119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dramatic Increase in Polymer Glass Transition Temperature under Extreme Nanoconfinement in Weakly Interacting Nanoparticle Films.
    Wang H; Hor JL; Zhang Y; Liu T; Lee D; Fakhraai Z
    ACS Nano; 2018 Jun; 12(6):5580-5587. PubMed ID: 29792676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of ultrathin nanocomposite polymer films controlled by the embedding of gold nanoparticles.
    Amarandei G; Clancy I; O'Dwyer C; Arshak A; Corcoran D
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20758-67. PubMed ID: 25491070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diminishing Interfacial Effects with Decreasing Nanoparticle Size in Polymer-Nanoparticle Composites.
    Emamy H; Kumar SK; Starr FW
    Phys Rev Lett; 2018 Nov; 121(20):207801. PubMed ID: 30500219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts.
    Lin CC; Griffin PJ; Chao H; Hore MJA; Ohno K; Clarke N; Riggleman RA; Winey KI; Composto RJ
    J Chem Phys; 2017 May; 146(20):203332. PubMed ID: 28571331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites.
    Zhang W; Emamy H; Pazmiño Betancourt BA; Vargas-Lara F; Starr FW; Douglas JF
    J Chem Phys; 2019 Sep; 151(12):124705. PubMed ID: 31575170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the Bound Polymer Layer on Nanoparticle Diffusion in Polymer Melts.
    Griffin PJ; Bocharova V; Middleton LR; Composto RJ; Clarke N; Schweizer KS; Winey KI
    ACS Macro Lett; 2016 Oct; 5(10):1141-1145. PubMed ID: 35658173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion and Separation of Nanoparticles on Polymer-Grafted Porous Substrates.
    Santo KP; Vishnyakov A; Brun Y; Neimark AV
    Langmuir; 2018 Jan; 34(4):1481-1496. PubMed ID: 28914540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic phase transitions in freestanding polymer thin films.
    Ivancic RJS; Riggleman RA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25407-25413. PubMed ID: 33008880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers.
    Ge T; Kalathi JT; Halverson JD; Grest GS; Rubinstein M
    Macromolecules; 2017 Feb; 50(4):1749-1754. PubMed ID: 28392603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of diblock copolymer-maghemite nanoparticle hybrid thin films.
    Yao Y; Metwalli E; Moulin JF; Su B; Opel M; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18152-62. PubMed ID: 25243575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size-induced transition between surface segregation and bulk aggregation in a thin film of athermal polymer-nanoparticle blends.
    Teng CY; Sheng YJ; Tsao HK
    J Chem Phys; 2017 Jan; 146(1):014904. PubMed ID: 28063426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation-Dispersion Transition for Nanoparticles in Semiflexible Ring Polymer Nanocomposite Melts.
    Deng Z; Jiang Y; He L; Zhang L
    J Phys Chem B; 2016 Nov; 120(44):11574-11581. PubMed ID: 27753486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk polymer nanocomposites with preparation protocol governed nanostructure: the origin and properties of aggregates and polymer bound clusters.
    Lepcio P; Ondreas F; Zarybnicka K; Zboncak M; Caha O; Jancar J
    Soft Matter; 2018 Mar; 14(11):2094-2103. PubMed ID: 29487934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of mono- and poly-dispersed nanoparticles on emulsion droplets: antagonistic
    Khedr A; Striolo A
    Phys Chem Chem Phys; 2020 Oct; 22(39):22662-22673. PubMed ID: 33015700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts.
    Zhou X; Jiang Y; Deng Z; Zhang L
    Sci Rep; 2017 Mar; 7():44325. PubMed ID: 28290546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.