These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28766669)

  • 1. Broadband room temperature strong coupling between quantum dots and metamaterials.
    Indukuri C; Yadav RK; Basu JK
    Nanoscale; 2017 Aug; 9(32):11418-11423. PubMed ID: 28766669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of photonic spin-momentum locking due to coupling of achiral metamaterials and quantum dots.
    Yadav RK; Liu W; Indukuri SRKC; Vasista AB; Kumar GVP; Agarwal GS; Basu JK
    J Phys Condens Matter; 2021 Jan; 33(1):015701. PubMed ID: 33034303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-frequency hyperbolic metasurface.
    High AA; Devlin RC; Dibos A; Polking M; Wild DS; Perczel J; de Leon NP; Lukin MD; Park H
    Nature; 2015 Jun; 522(7555):192-6. PubMed ID: 26062510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field strong coupling of single quantum dots.
    Groß H; Hamm JM; Tufarelli T; Hess O; Hecht B
    Sci Adv; 2018 Mar; 4(3):eaar4906. PubMed ID: 29511739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal collective ultrastrong interaction of plasmonic metamaterials and photons in a terahertz photonic crystal cavity.
    Meng F; Thomson MD; Klug B; Čibiraitė D; Ul-Islam Q; Roskos HG
    Opt Express; 2019 Aug; 27(17):24455-24468. PubMed ID: 31510334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature.
    Zhao X; Chen L; Chen J; Shi W; Liu F
    Opt Express; 2016 Sep; 24(18):20219-27. PubMed ID: 27607629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals.
    Marino E; Sciortino A; Berkhout A; MacArthur KE; Heggen M; Gregorkiewicz T; Kodger TE; Capretti A; Murray CB; Koenderink AF; Messina F; Schall P
    ACS Nano; 2020 Oct; 14(10):13806-13815. PubMed ID: 32924433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Control of Eu
    Genchi D; Kalinic B; Balasa IG; Cesca T; Mattei G
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic hypercrystals for control of light-matter interactions.
    Galfsky T; Gu J; Narimanov EE; Menon VM
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5125-5129. PubMed ID: 28461458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons.
    Leng H; Szychowski B; Daniel MC; Pelton M
    Nat Commun; 2018 Oct; 9(1):4012. PubMed ID: 30275446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong exciton-plasmon coupling in dye-doped film on a planar hyperbolic metamaterial.
    Tanyi EK; Hong N; Sawyer T; Van Schenck JDB; Giesbers G; Ostroverkhova O; Cheng LJ
    Opt Lett; 2020 Dec; 45(24):6736-6739. PubMed ID: 33325884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.
    Kapitanova PV; Ginzburg P; Rodríguez-Fortuño FJ; Filonov DS; Voroshilov PM; Belov PA; Poddubny AN; Kivshar YS; Wurtz GA; Zayats AV
    Nat Commun; 2014; 5():3226. PubMed ID: 24526135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Coupling in Semiconductor Hyperbolic Metamaterials.
    Sohr P; Wei D; Wang Z; Law S
    Nano Lett; 2021 Dec; 21(23):9951-9957. PubMed ID: 34787424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays.
    Yadav RK; Bourgeois MR; Cherqui C; Juarez XG; Wang W; Odom TW; Schatz GC; Basu JK
    ACS Nano; 2020 Jun; 14(6):7347-7357. PubMed ID: 32453547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial.
    Lin HI; Tan HY; Liao YM; Shen KC; Shalaginov MY; Kataria M; Chen CT; Chang JW; Chen YF
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49224-49231. PubMed ID: 34609827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials.
    Poddubny AN; Iorsh IV; Sukhorukov AA
    Phys Rev Lett; 2016 Sep; 117(12):123901. PubMed ID: 27689275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities.
    Katzen JM; Tserkezis C; Cai Q; Li LH; Kim JM; Lee G; Yi GR; Hendren WR; Santos EJG; Bowman RM; Huang F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19866-19873. PubMed ID: 32267669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.