These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28766673)

  • 1. Generation and characterization of monodisperse deformable alginate and pNIPAM microparticles with a wide range of shear moduli.
    Hwang MY; Kim SG; Lee HS; Muller SJ
    Soft Matter; 2017 Aug; 13(34):5785-5794. PubMed ID: 28766673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic fabrication of shape-tunable alginate microgels: effect of size and impact velocity.
    Hu Y; Azadi G; Ardekani AM
    Carbohydr Polym; 2015 Apr; 120():38-45. PubMed ID: 25662685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic particle deformation in rectangular channel flow as a measure of particle stiffness.
    Hwang MY; Kim SG; Lee HS; Muller SJ
    Soft Matter; 2018 Jan; 14(2):216-227. PubMed ID: 29227498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Producing shape-engineered alginate particles using viscoplastic fluids.
    Asadi S; Nelson AZ; Doyle PS
    Soft Matter; 2022 Sep; 18(36):6848-6856. PubMed ID: 36043375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach.
    Ahmed H; Stokke BT
    Lab Chip; 2021 Jun; 21(11):2232-2243. PubMed ID: 33903873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
    Mazutis L; Vasiliauskas R; Weitz DA
    Macromol Biosci; 2015 Dec; 15(12):1641-6. PubMed ID: 26198619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Microparticles with Front-Back Asymmetric Shapes Using Anisotropic Gelation.
    Lee D; Kitahata H; Ito H
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary-assisted fabrication of biconcave polymeric microlenses from microfluidic ternary emulsion droplets.
    Nisisako T; Ando T; Hatsuzawa T
    Small; 2014 Dec; 10(24):5116-25. PubMed ID: 25123596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking.
    Hu Y; Wang Q; Wang J; Zhu J; Wang H; Yang Y
    Biomicrofluidics; 2012 Jun; 6(2):26502-265029. PubMed ID: 22670170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic on-chip production of microgels using combined geometries.
    Shieh H; Saadatmand M; Eskandari M; Bastani D
    Sci Rep; 2021 Jan; 11(1):1565. PubMed ID: 33452407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic production of degradable thermoresponsive poly(N-isopropylacrylamide)-based microgels.
    Sivakumaran D; Mueller E; Hoare T
    Soft Matter; 2017 Dec; 13(47):9060-9070. PubMed ID: 29177347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.
    Liu M; Sun XT; Yang CG; Xu ZR
    J Colloid Interface Sci; 2016 Mar; 466():20-7. PubMed ID: 26704472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size distribution and elastic properties of thermo-responsive polymer gel microparticles in suspension probed by ultrasonic spectroscopy.
    Inoue T; Norisuye T; Sugita K; Nakanishi H; Tran-Cong-Miyata Q
    Ultrasonics; 2018 Jan; 82():31-38. PubMed ID: 28738253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device.
    Xu S; Nisisako T
    Sci Rep; 2020 Mar; 10(1):4549. PubMed ID: 32165712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.