These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28766673)

  • 21. Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops.
    Min NG; Kim B; Lee TY; Kim D; Lee DC; Kim SH
    Langmuir; 2015 Jan; 31(3):937-43. PubMed ID: 25549662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly crosslinked poly(dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals.
    Shojaei-Zadeh S; Morris JF; Couzis A; Maldarelli C
    J Colloid Interface Sci; 2011 Nov; 363(1):25-33. PubMed ID: 21820125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production, deformation and mechanical investigation of magnetic alginate capsules.
    Zwar E; Kemna A; Richter L; Degen P; Rehage H
    J Phys Condens Matter; 2018 Feb; 30(8):085101. PubMed ID: 29323659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shape-tunable wax microparticle synthesis via microfluidics and droplet impact.
    Lee D; Beesabathuni SN; Shen AQ
    Biomicrofluidics; 2015 Nov; 9(6):064114. PubMed ID: 26697124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic solvent extraction of poly(vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation.
    Sharratt WN; Brooker A; Robles ESJ; Cabral JT
    Soft Matter; 2018 Jun; 14(22):4453-4463. PubMed ID: 29697110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crosslinking Strategies for the Microfluidic Production of Microgels.
    Chen M; Bolognesi G; Vladisavljević GT
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34202959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasoft, highly deformable microgels.
    Bachman H; Brown AC; Clarke KC; Dhada KS; Douglas A; Hansen CE; Herman E; Hyatt JS; Kodlekere P; Meng Z; Saxena S; Spears MW; Welsch N; Lyon LA
    Soft Matter; 2015 Mar; 11(10):2018-28. PubMed ID: 25648590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip.
    Yang CH; Huang KS; Chang JY
    Biomed Microdevices; 2007 Apr; 9(2):253-9. PubMed ID: 17180710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale mechanics of microgel particles.
    Aufderhorst-Roberts A; Baker D; Foster RJ; Cayre O; Mattsson J; Connell SD
    Nanoscale; 2018 Aug; 10(34):16050-16061. PubMed ID: 30106410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass Production of Cell-Laden Calcium Alginate Particles with Centrifugal Force.
    Morimoto Y; Onuki M; Takeuchi S
    Adv Healthc Mater; 2017 Jul; 6(13):. PubMed ID: 28426183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic On-Chip Production of Alginate Hydrogels Using Double Coflow Geometry.
    Sattari A; Janfaza S; Mashhadi Keshtiban M; Tasnim N; Hanafizadeh P; Hoorfar M
    ACS Omega; 2021 Oct; 6(40):25964-25971. PubMed ID: 34660958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery.
    Almería B; Deng W; Fahmy TM; Gomez A
    J Colloid Interface Sci; 2010 Mar; 343(1):125-33. PubMed ID: 20022337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system.
    Serra C; Berton N; Bouquey M; Prat L; Hadziioannou G
    Langmuir; 2007 Jul; 23(14):7745-50. PubMed ID: 17530868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.