These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28766987)

  • 1. Optical verification and in-vitro characterization of two commercially available acoustic bubble counters for cardiopulmonary bypass systems.
    Segers T; Stehouwer MC; de Somer FMJJ; de Mol BA; Versluis M
    Perfusion; 2018 Jan; 33(1):16-24. PubMed ID: 28766987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracorporeal bubbles: a word of caution.
    De Somer FM; Vetrano MR; Van Beeck JP; Van Nooten GJ
    Interact Cardiovasc Thorac Surg; 2010 Jun; 10(6):995-1001. PubMed ID: 20197351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow.
    Dodonov M; Milano A; Onorati F; Dal Corso B; Menon T; Ferrarini D; Tessari M; Faggian G; Mazzucco A
    Artif Organs; 2013 Apr; 37(4):357-67. PubMed ID: 23489040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arterial Limb Microemboli during Cardiopulmonary Bypass: Observations from a Congenital Cardiac Surgery Practice.
    Matte GS; Connor KR; Liu H; DiNardo JA; Faraoni D; Pigula F
    J Extra Corpor Technol; 2016 Mar; 48(1):5-10. PubMed ID: 27134302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles.
    Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R
    Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Should Air Bubble Detectors Be Used to Quantify Microbubble Activity during Cardiopulmonary Bypass?
    Newland RF; Baker RA; Mazzone AL; Valiyapurayil VN
    J Extra Corpor Technol; 2015 Sep; 47(3):174-9. PubMed ID: 26543252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC.
    Stanzel RD; Henderson M
    Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring microemboli during cardiopulmonary bypass with the EDAC quantifier.
    Lynch JE; Wells C; Akers T; Frantz P; Garrett D; Scott ML; Williamson L; Agnew B; Lynch JK
    J Extra Corpor Technol; 2010 Sep; 42(3):212-8. PubMed ID: 21114224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure.
    Lou S; Ji B; Liu J; Yu K; Long C
    Int J Artif Organs; 2011 Nov; 34(11):1039-51. PubMed ID: 22183517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An In-Vitro Study Comparing the GME Handling of Two Contemporary Oxygenators.
    Gisnarian CJ; Hedman A; Shann KG
    J Extra Corpor Technol; 2017 Dec; 49(4):262-272. PubMed ID: 29302117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How effective are cardiopulmonary bypass circuits at removing gaseous microemboli?
    Jones TJ; Deal DD; Vernon JC; Blackburn N; Stump DA
    J Extra Corpor Technol; 2002 Mar; 34(1):34-9. PubMed ID: 11911627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach.
    Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A
    Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass.
    Husebråten IM; Fiane AE; Ringdal MIL; Thiara APS
    Perfusion; 2018 Jan; 33(1):30-35. PubMed ID: 28784030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrospective Analysis of Air Handling by Contemporary Oxygenators in the Setting of Cardiac Surgery.
    Benstoem C; Bleilevens C; Borchard R; Stoppe C; Goetzenich A; Autschbach R; Breuer T
    Ann Thorac Cardiovasc Surg; 2018 Oct; 24(5):230-237. PubMed ID: 29998925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Oxygenator Size on Air Removal Characteristics: A Clinical Evaluation.
    Stehouwer MC; de Vroege R; Kelder JC; Hofman FN; de Mol BA; Bruins P
    ASAIO J; 2016; 62(4):421-6. PubMed ID: 26919180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.