These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28767114)

  • 1. In situ twisting for stabilizing and toughening conductive graphene yarns.
    Xiang X; Yang Z; Di J; Zhang W; Li R; Kang L; Zhang Y; Zhang H; Li Q
    Nanoscale; 2017 Aug; 9(32):11523-11529. PubMed ID: 28767114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly conductive and environmentally stable gold/graphene yarns for flexible and wearable electronics.
    Yun YJ; Ah CS; Hong WG; Kim HJ; Shin JH; Jun Y
    Nanoscale; 2017 Aug; 9(32):11439-11445. PubMed ID: 28786455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarn with high NO
    Yun YJ; Kim DY; Hong WG; Ha DH; Jun Y; Lee HK
    RSC Adv; 2018 Feb; 8(14):7615-7621. PubMed ID: 35539104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance coils and yarns of polymeric piezoelectric nanofibers.
    Baniasadi M; Huang J; Xu Z; Moreno S; Yang X; Chang J; Quevedo-Lopez MA; Naraghi M; Minary-Jolandan M
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5358-66. PubMed ID: 25691363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor.
    Xu P; Kang J; Choi JB; Suhr J; Yu J; Li F; Byun JH; Kim BS; Chou TW
    ACS Nano; 2014 Sep; 8(9):9437-45. PubMed ID: 25144124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane.
    Kim H; Jang Y; Lee DY; Moon JH; Choi JG; Spinks GM; Gambhir S; Officer DL; Wallace GG; Kim SJ
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31162-31168. PubMed ID: 31356738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A predictive model of the tensile strength of twisted carbon nanotube yarns.
    Jeon SY; Jang J; Koo BW; Kim YW; Yu WR
    Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thread-like supercapacitors based on one-step spun nanocomposite yarns.
    Meng Q; Wang K; Guo W; Fang J; Wei Z; She X
    Small; 2014 Aug; 10(15):3187-93. PubMed ID: 24729355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns.
    Liu X; Chang H; Li Y; Huck WT; Zheng Z
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):529-35. PubMed ID: 20356201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin yarns inspired by tendons--structural and mechanical perspectives.
    Selle HK; Bar-On B; Marom G; Wagner HD
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():1-7. PubMed ID: 25492166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in Flexible Electronic Textile for Heating Application: A Critical Review.
    Repon MR; Mikučionienė D
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultratough Bioinspired Graphene Fiber via Sequential Toughening of Hydrogen and Ionic Bonding.
    Wang X; Peng J; Zhang Y; Li M; Saiz E; Tomsia AP; Cheng Q
    ACS Nano; 2018 Dec; 12(12):12638-12645. PubMed ID: 30462484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing.
    Foroughi J; Spinks GM; Aziz S; Mirabedini A; Jeiranikhameneh A; Wallace GG; Kozlov ME; Baughman RH
    ACS Nano; 2016 Oct; 10(10):9129-9135. PubMed ID: 27607843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-organic, conductive and biodegradable yarns from core-shell nanofibers through electrospinning.
    Weerasinghe VT; Dissanayake DGK; Perera WPTD; Tissera ND; Wijesena RN; Wanasekara ND
    RSC Adv; 2020 Sep; 10(54):32875-32884. PubMed ID: 35516473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.