These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 28767259)
41. Tuning the Amount of Oxygen Vacancies in Sputter-Deposited SnO Ali F; Pham ND; Bradford HJ; Khoshsirat N; Ostrikov K; Bell JM; Wang H; Tesfamichael T ChemSusChem; 2018 Sep; 11(18):3096-3103. PubMed ID: 30027689 [TBL] [Abstract][Full Text] [Related]
42. Interface Modification for Energy Level Alignment and Charge Extraction in CsPbI Iqbal Z; Zu F; Musiienko A; Gutierrez-Partida E; Köbler H; Gries TW; Sannino GV; Canil L; Koch N; Stolterfoht M; Neher D; Pavone M; Muñoz-García AB; Abate A; Wang Q ACS Energy Lett; 2023 Oct; 8(10):4304-4314. PubMed ID: 37854052 [TBL] [Abstract][Full Text] [Related]
43. Elucidating the Mechanism of Self-Healing in Hydrogel-Lead Halide Perovskite Composites for Use in Photovoltaic Devices. Zhao D; Flavell TA; Aljuaid F; Edmondson S; Spencer BF; Walton AS; Thomas AG; Flavell WR ACS Appl Mater Interfaces; 2023 Jun; 15(23):28008-28022. PubMed ID: 37253100 [TBL] [Abstract][Full Text] [Related]
44. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. Wang Q; Chueh CC; Zhao T; Cheng J; Eslamian M; Choy WCH; Jen AK ChemSusChem; 2017 Oct; 10(19):3794-3803. PubMed ID: 28881441 [TBL] [Abstract][Full Text] [Related]
45. Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer. Chang CY; Tsai BC; Hsiao YC ChemSusChem; 2017 May; 10(9):1981-1988. PubMed ID: 28334500 [TBL] [Abstract][Full Text] [Related]
46. Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells. Li S; Wu Y; Zhang C; Liu Y; Sun Q; Cui Y; Liu SF; Hao Y ACS Appl Mater Interfaces; 2020 Oct; 12(40):45073-45082. PubMed ID: 32921039 [TBL] [Abstract][Full Text] [Related]
47. Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH Zhou W; Zhou P; Lei X; Fang Z; Zhang M; Liu Q; Chen T; Zeng H; Ding L; Zhu J; Dai S; Yang S ACS Appl Mater Interfaces; 2018 Jan; 10(2):1897-1908. PubMed ID: 29271198 [TBL] [Abstract][Full Text] [Related]
48. Giant improvement of performances of perovskite solar cells via component engineering. Wei Q; Chang D; Ye Z; Li X; Zan L; Gao L; Fu F; Yang D J Colloid Interface Sci; 2021 Apr; 588():393-400. PubMed ID: 33422788 [TBL] [Abstract][Full Text] [Related]
49. Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. Zhou Y; Yin X; Luo Q; Zhao X; Zhou D; Han J; Hao F; Tai M; Li J; Liu P; Jiang K; Lin H ACS Appl Mater Interfaces; 2018 Sep; 10(37):31384-31393. PubMed ID: 30125080 [TBL] [Abstract][Full Text] [Related]
50. Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. Li P; Liang C; Zhang Y; Li F; Song Y; Shao G ACS Appl Mater Interfaces; 2016 Nov; 8(47):32574-32580. PubMed ID: 27760287 [TBL] [Abstract][Full Text] [Related]
51. Suppressing Excess Lead Iodide Aggregation and Reducing N-Type Doping at Perovskite/HTL Interface for Efficient Perovskite Solar Cells. Cao K; Zhu J; Wu Y; Ge M; Zhu Y; Qian J; Wang Y; Hu K; Lu J; Shen W; Liu L; Chen S Small; 2023 Oct; 19(43):e2301822. PubMed ID: 37386817 [TBL] [Abstract][Full Text] [Related]
53. Improved Reproducibility for Perovskite Solar Cells with 1 cm Shen H; Wu Y; Peng J; Duong T; Fu X; Barugkin C; White TP; Weber K; Catchpole KR ACS Appl Mater Interfaces; 2017 Feb; 9(7):5974-5981. PubMed ID: 28139114 [TBL] [Abstract][Full Text] [Related]
54. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI Kim KS; Jin IS; Park SH; Lim SJ; Jung JW ACS Appl Mater Interfaces; 2020 Aug; 12(32):36228-36236. PubMed ID: 32692148 [TBL] [Abstract][Full Text] [Related]
55. Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells. Xiao M; Joglekar S; Zhang X; Jasensky J; Ma J; Cui Q; Guo LJ; Chen Z J Am Chem Soc; 2017 Mar; 139(9):3378-3386. PubMed ID: 28166630 [TBL] [Abstract][Full Text] [Related]
56. Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH3NH3PbBr0.9I2.1 Quantum Dots. Cha M; Da P; Wang J; Wang W; Chen Z; Xiu F; Zheng G; Wang ZS J Am Chem Soc; 2016 Jul; 138(27):8581-7. PubMed ID: 27345104 [TBL] [Abstract][Full Text] [Related]
57. Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface. Wu Z; Liu Z; Hu Z; Hawash Z; Qiu L; Jiang Y; Ono LK; Qi Y Adv Mater; 2019 Mar; 31(11):e1804284. PubMed ID: 30680833 [TBL] [Abstract][Full Text] [Related]
58. Two-Step Physical Deposition of a Compact CuI Hole-Transport Layer and the Formation of an Interfacial Species in Perovskite Solar Cells. Gharibzadeh S; Nejand BA; Moshaii A; Mohammadian N; Alizadeh AH; Mohammadpour R; Ahmadi V; Alizadeh A ChemSusChem; 2016 Aug; 9(15):1929-37. PubMed ID: 27357330 [TBL] [Abstract][Full Text] [Related]
59. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Meng L; You J; Guo TF; Yang Y Acc Chem Res; 2016 Jan; 49(1):155-65. PubMed ID: 26693663 [TBL] [Abstract][Full Text] [Related]
60. The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals. Li B; Isikgor FH; Coskun H; Ouyang J Angew Chem Int Ed Engl; 2017 Dec; 56(50):16073-16076. PubMed ID: 29071807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]