These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28767372)
41. Neurodegenerative diseases detection using distance metrics and sparse coding: A new perspective on gait symmetric features. Ghaderyan P; Ghoreshi Beyrami SM Comput Biol Med; 2020 May; 120():103736. PubMed ID: 32250848 [TBL] [Abstract][Full Text] [Related]
42. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease. Hausdorff JM; Cudkowicz ME; Firtion R; Wei JY; Goldberger AL Mov Disord; 1998 May; 13(3):428-37. PubMed ID: 9613733 [TBL] [Abstract][Full Text] [Related]
43. Identification of Neurodegenerative Diseases From Gait Rhythm Through Time Domain and Time-Dependent Spectral Descriptors. Mengarelli A; Tigrini A; Fioretti S; Verdini F IEEE J Biomed Health Inform; 2022 Dec; 26(12):5974-5982. PubMed ID: 36074873 [TBL] [Abstract][Full Text] [Related]
44. Spatiotemporal Gait Patterns During Overt and Covert Evaluation in Patients With Parkinson´s Disease and Healthy Subjects: Is There a Hawthorne Effect? Robles-García V; Corral-Bergantiños Y; Espinosa N; Jácome MA; García-Sancho C; Cudeiro J; Arias P J Appl Biomech; 2015 Jun; 31(3):189-94. PubMed ID: 25536440 [TBL] [Abstract][Full Text] [Related]
45. Robust Automated Step Extraction From Time-Series Contact Force Data Using the PDShoe. Winfree KN; Pretzer-Aboff I; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1012-9. PubMed ID: 25532188 [TBL] [Abstract][Full Text] [Related]
46. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson's disease and Huntington's disease subjects. Trojaniello D; Ravaschio A; Hausdorff JM; Cereatti A Gait Posture; 2015 Sep; 42(3):310-6. PubMed ID: 26163348 [TBL] [Abstract][Full Text] [Related]
47. Tensor Decomposition of Gait Dynamics in Parkinson's Disease. Pham TD; Yan H IEEE Trans Biomed Eng; 2018 Aug; 65(8):1820-1827. PubMed ID: 29989951 [TBL] [Abstract][Full Text] [Related]
48. An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology. Dolatabadi E; Taati B; Mihailidis A IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2336-2346. PubMed ID: 28792901 [TBL] [Abstract][Full Text] [Related]
49. Selection of gait parameters for differential diagnostics of patients with de novo Parkinson's disease. Djurić-Jovičić M; Belić M; Stanković I; Radovanović S; Kostić VS Neurol Res; 2017 Oct; 39(10):853-861. PubMed ID: 28715936 [TBL] [Abstract][Full Text] [Related]
50. Analysis and evaluation of handwriting in patients with Parkinson's disease using kinematic, geometrical, and non-linear features. Rios-Urrego CD; Vásquez-Correa JC; Vargas-Bonilla JF; Nöth E; Lopera F; Orozco-Arroyave JR Comput Methods Programs Biomed; 2019 May; 173():43-52. PubMed ID: 31046995 [TBL] [Abstract][Full Text] [Related]
51. Time series modeling characterizes stride time variability to identify individuals with neurodegenerative disorders. Halkiadakis Y; Davidson N; Morgan KD Hum Mov Sci; 2023 Dec; 92():103152. PubMed ID: 37898010 [TBL] [Abstract][Full Text] [Related]
52. Kinematic and Kinetic Patterns Related to Free-Walking in Parkinson's Disease. Martínez M; Villagra F; Castellote JM; Pastor MA Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513798 [TBL] [Abstract][Full Text] [Related]
53. Effects of leg muscle fatigue on gait in patients with Parkinson's disease and controls with high and low levels of daily physical activity. Santos PC; Gobbi LT; Orcioli-Silva D; Simieli L; van Dieën JH; Barbieri FA Gait Posture; 2016 Jun; 47():86-91. PubMed ID: 27264409 [TBL] [Abstract][Full Text] [Related]
54. Gait in SWEDDs patients: comparison with Parkinson's disease patients and healthy controls. Mian OS; Schneider SA; Schwingenschuh P; Bhatia KP; Day BL Mov Disord; 2011 Jun; 26(7):1266-73. PubMed ID: 21442658 [TBL] [Abstract][Full Text] [Related]
55. Complexity analysis of stride interval time series by threshold dependent symbolic entropy. Aziz W; Arif M Eur J Appl Physiol; 2006 Sep; 98(1):30-40. PubMed ID: 16841202 [TBL] [Abstract][Full Text] [Related]
56. Computational intelligent gait-phase detection system to identify pathological gait. Senanayake CM; Senanayake SM IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1173-9. PubMed ID: 20801745 [TBL] [Abstract][Full Text] [Related]
57. Identification of specific gait patterns in patients with cerebellar ataxia, spastic paraplegia, and Parkinson's disease: A non-hierarchical cluster analysis. Serrao M; Chini G; Bergantino M; Sarnari D; Casali C; Conte C; Ranavolo A; Marcotulli C; Rinaldi M; Coppola G; Bini F; Pierelli F; Marinozzi F Hum Mov Sci; 2018 Feb; 57():267-279. PubMed ID: 28967438 [TBL] [Abstract][Full Text] [Related]
58. Spatial fuzzy c-means algorithm with adaptive fuzzy exponent selection for robust vermilion border detection in healthy and diseased lower lips. Spyridonos P; Gaitanis G; Tzaphlidou M; Bassukas ID Comput Methods Programs Biomed; 2014 May; 114(3):291-301. PubMed ID: 24661607 [TBL] [Abstract][Full Text] [Related]
59. Statistical analysis of gait rhythm in patients with Parkinson's disease. Wu Y; Krishnan S IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):150-8. PubMed ID: 20650700 [TBL] [Abstract][Full Text] [Related]
60. Support vector machines for automated gait classification. Begg RK; Palaniswami M; Owen B IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]