These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 28767678)
41. Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: molecular dynamics simulation of the agonist-bound state in the membrane-aqueous system. Slusarz MJ; Slusarz R; Ciarkowski J Biopolymers; 2006 Apr; 81(5):321-38. PubMed ID: 16333859 [TBL] [Abstract][Full Text] [Related]
42. The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities. Morin D; Cotte N; Balestre MN; Mouillac B; Manning M; Breton C; Barberis C FEBS Lett; 1998 Dec; 441(3):470-5. PubMed ID: 9891993 [TBL] [Abstract][Full Text] [Related]
44. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Bernier V; Lagacé M; Lonergan M; Arthus MF; Bichet DG; Bouvier M Mol Endocrinol; 2004 Aug; 18(8):2074-84. PubMed ID: 15166253 [TBL] [Abstract][Full Text] [Related]
45. Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. Los EL; Deen PM; Robben JH J Neuroendocrinol; 2010 May; 22(5):393-9. PubMed ID: 20163515 [TBL] [Abstract][Full Text] [Related]
46. Gαs and Gαq/11 protein coupling bias of two AVPR2 mutants (R68W and V162A) that cause nephrogenic diabetes insipidus. Erdem Tuncdemir B J Recept Signal Transduct Res; 2022 Dec; 42(6):573-579. PubMed ID: 35901021 [TBL] [Abstract][Full Text] [Related]
47. Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Ciolek J; Reinfrank H; Quinton L; Viengchareun S; Stura EA; Vera L; Sigismeau S; Mouillac B; Orcel H; Peigneur S; Tytgat J; Droctové L; Beau F; Nevoux J; Lombès M; Mourier G; De Pauw E; Servent D; Mendre C; Witzgall R; Gilles N Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7154-7159. PubMed ID: 28630289 [TBL] [Abstract][Full Text] [Related]
48. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice. Krieg SM; Sonanini S; Plesnila N; Trabold R J Neurotrauma; 2015 Feb; 32(4):221-7. PubMed ID: 25111427 [TBL] [Abstract][Full Text] [Related]
49. Discovery of highly selective brain-penetrant vasopressin 1a antagonists for the potential treatment of autism via a chemogenomic and scaffold hopping approach. Ratni H; Rogers-Evans M; Bissantz C; Grundschober C; Moreau JL; Schuler F; Fischer H; Alvarez Sanchez R; Schnider P J Med Chem; 2015 Mar; 58(5):2275-89. PubMed ID: 25654260 [TBL] [Abstract][Full Text] [Related]
50. Nonpeptide antagonists for vasopressin receptors. Pharmacology of SR 121463A, a new potent and highly selective V2 receptor antagonist. Serradeil-Le Gal C Adv Exp Med Biol; 1998; 449():427-38. PubMed ID: 10026834 [TBL] [Abstract][Full Text] [Related]
52. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. Houston C; Wenzel-Seifert K; Bürckstümmer T; Seifert R J Neurochem; 2002 Feb; 80(4):678-96. PubMed ID: 11841575 [TBL] [Abstract][Full Text] [Related]
53. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Juul KV; Bichet DG; Nielsen S; Nørgaard JP Am J Physiol Renal Physiol; 2014 May; 306(9):F931-40. PubMed ID: 24598801 [TBL] [Abstract][Full Text] [Related]
54. Sodium excretion in response to vasopressin and selective vasopressin receptor antagonists. Perucca J; Bichet DG; Bardoux P; Bouby N; Bankir L J Am Soc Nephrol; 2008 Sep; 19(9):1721-31. PubMed ID: 18596120 [TBL] [Abstract][Full Text] [Related]
55. Adenoviral gene transfer of the human V2 vasopressin receptor improves contractile force of rat cardiomyocytes. Laugwitz KL; Ungerer M; Schöneberg T; Weig HJ; Kronsbein K; Moretti A; Hoffmann K; Seyfarth M; Schultz G; Schömig A Circulation; 1999 Feb; 99(7):925-33. PubMed ID: 10027817 [TBL] [Abstract][Full Text] [Related]
56. A role for K268 in V2R folding. Gouill CL; Darden T; Madziva MT; Birnbaumer M FEBS Lett; 2005 Sep; 579(22):4985-90. PubMed ID: 16115624 [TBL] [Abstract][Full Text] [Related]
57. Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Robben JH; Kortenoeven ML; Sze M; Yae C; Milligan G; Oorschot VM; Klumperman J; Knoers NV; Deen PM Proc Natl Acad Sci U S A; 2009 Jul; 106(29):12195-200. PubMed ID: 19587238 [TBL] [Abstract][Full Text] [Related]
58. Assay strategies for identification of therapeutic leads that target protein trafficking. Conn PM; Spicer TP; Scampavia L; Janovick JA Trends Pharmacol Sci; 2015 Aug; 36(8):498-505. PubMed ID: 26067100 [TBL] [Abstract][Full Text] [Related]
59. Vasopressin receptors and pharmacological chaperones: from functional rescue to promising therapeutic strategies. Mouillac B; Mendre C Pharmacol Res; 2014 May; 83():74-8. PubMed ID: 24239889 [TBL] [Abstract][Full Text] [Related]
60. β-adrenergic receptor-mediated cardiac contractility is inhibited via vasopressin type 1A-receptor-dependent signaling. Tilley DG; Zhu W; Myers VD; Barr LA; Gao E; Li X; Song J; Carter RL; Makarewich CA; Yu D; Troupes CD; Grisanti LA; Coleman RC; Koch WJ; Houser SR; Cheung JY; Feldman AM Circulation; 2014 Nov; 130(20):1800-11. PubMed ID: 25205804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]