These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 28768096)
1. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related]
2. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Liu J; Mansouri K; Judson RS; Martin MT; Hong H; Chen M; Xu X; Thomas RS; Shah I Chem Res Toxicol; 2015 Apr; 28(4):738-51. PubMed ID: 25697799 [TBL] [Abstract][Full Text] [Related]
3. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Shah I; Liu J; Judson RS; Thomas RS; Patlewicz G Regul Toxicol Pharmacol; 2016 Aug; 79():12-24. PubMed ID: 27174420 [TBL] [Abstract][Full Text] [Related]
4. In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Mansouri K; Judson RS Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474 [TBL] [Abstract][Full Text] [Related]
5. Machine learning models for predicting endocrine disruption potential of environmental chemicals. Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533 [TBL] [Abstract][Full Text] [Related]
6. A review on machine learning methods for in silico toxicity prediction. Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866 [TBL] [Abstract][Full Text] [Related]
7. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
8. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models. Fang X; Bagui S; Bagui S Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761 [TBL] [Abstract][Full Text] [Related]
9. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data. Banerjee A; Roy K Environ Sci Process Impacts; 2024 Jun; 26(6):991-1007. PubMed ID: 38743054 [TBL] [Abstract][Full Text] [Related]
10. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors. Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657 [TBL] [Abstract][Full Text] [Related]
11. Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates. Truong L; Ouedraogo G; Pham L; Clouzeau J; Loisel-Joubert S; Blanchet D; Noçairi H; Setzer W; Judson R; Grulke C; Mansouri K; Martin M Arch Toxicol; 2018 Feb; 92(2):587-600. PubMed ID: 29075892 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships. Luechtefeld T; Maertens A; McKim JM; Hartung T; Kleensang A; Sá-Rocha V J Appl Toxicol; 2015 Nov; 35(11):1361-1371. PubMed ID: 26046447 [TBL] [Abstract][Full Text] [Related]
13. A Comparison of Machine Learning Approaches for predicting Hepatotoxicity potential using Chemical Structure and Targeted Transcriptomic Data. Tate T; Patlewicz G; Shah I Comput Toxicol; 2024 Mar; 29():1-14. PubMed ID: 38993502 [TBL] [Abstract][Full Text] [Related]
14. Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Martin MT; Knudsen TB; Reif DM; Houck KA; Judson RS; Kavlock RJ; Dix DJ Biol Reprod; 2011 Aug; 85(2):327-39. PubMed ID: 21565999 [TBL] [Abstract][Full Text] [Related]
15. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities. Garcia de Lomana M; Morger A; Norinder U; Buesen R; Landsiedel R; Volkamer A; Kirchmair J; Mathea M J Chem Inf Model; 2021 Jul; 61(7):3255-3272. PubMed ID: 34153183 [TBL] [Abstract][Full Text] [Related]
16. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology. Li Y; Idakwo G; Thangapandian S; Chen M; Hong H; Zhang C; Gong P J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):219-236. PubMed ID: 30426823 [TBL] [Abstract][Full Text] [Related]
17. Deep learning for predicting toxicity of chemicals: a mini review. Tang W; Chen J; Wang Z; Xie H; Hong H J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199 [TBL] [Abstract][Full Text] [Related]
18. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. Kavlock R; Dix D J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897 [TBL] [Abstract][Full Text] [Related]
19. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217 [TBL] [Abstract][Full Text] [Related]
20. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. Judson R; Elloumi F; Setzer RW; Li Z; Shah I BMC Bioinformatics; 2008 May; 9():241. PubMed ID: 18489778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]