BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

745 related articles for article (PubMed ID: 28768181)

  • 1. Long-Term Cold Adaptation Does Not Require FGF21 or UCP1.
    Keipert S; Kutschke M; Ost M; Schwarzmayr T; van Schothorst EM; Lamp D; Brachthäuser L; Hamp I; Mazibuko SE; Hartwig S; Lehr S; Graf E; Plettenburg O; Neff F; Tschöp MH; Jastroch M
    Cell Metab; 2017 Aug; 26(2):437-446.e5. PubMed ID: 28768181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold acclimation and pioglitazone combined increase thermogenic capacity of brown and white adipose tissues but this does not translate into higher energy expenditure in mice.
    Valdivia LFG; Castro É; Eichler RADS; Moreno MF; de Sousa É; Jardim GFR; Peixoto ÁS; Moraes MN; Castrucci AML; Nedergaard J; Petrovic N; Festuccia WT; Reckziegel P
    Am J Physiol Endocrinol Metab; 2023 Apr; 324(4):E358-E373. PubMed ID: 36856189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF21-Mediated Improvements in Glucose Clearance Require Uncoupling Protein 1.
    Kwon MM; O'Dwyer SM; Baker RK; Covey SD; Kieffer TJ
    Cell Rep; 2015 Nov; 13(8):1521-7. PubMed ID: 26586424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes.
    Chen MZ; Chang JC; Zavala-Solorio J; Kates L; Thai M; Ogasawara A; Bai X; Flanagan S; Nunez V; Phamluong K; Ziai J; Newman R; Warming S; Kolumam G; Sonoda J
    Mol Metab; 2017 Nov; 6(11):1454-1467. PubMed ID: 29107292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional thermogenic beige adipogenesis is inducible in human neck fat.
    Lee P; Werner CD; Kebebew E; Celi FS
    Int J Obes (Lond); 2014 Feb; 38(2):170-6. PubMed ID: 23736373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATF4 expression in thermogenic adipocytes is required for cold-induced thermogenesis in mice via FGF21-independent mechanisms.
    Bjorkman SH; Marti A; Jena J; García-Peña LM; Weatherford ET; Kato K; Koneru J; Chen J; Sood A; Potthoff MJ; Adams CM; Abel ED; Pereira RO
    Sci Rep; 2024 Jan; 14(1):1563. PubMed ID: 38238383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation.
    Jankovic A; Golic I; Markelic M; Stancic A; Otasevic V; Buzadzic B; Korac A; Korac B
    J Physiol; 2015 Aug; 593(15):3267-80. PubMed ID: 26096127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UCP1 in adipose tissues: two steps to full browning.
    Kalinovich AV; de Jong JM; Cannon B; Nedergaard J
    Biochimie; 2017 Mar; 134():127-137. PubMed ID: 28109720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete Aspects of FGF21 In Vivo Pharmacology Do Not Require UCP1.
    Samms RJ; Smith DP; Cheng CC; Antonellis PP; Perfield JW; Kharitonenkov A; Gimeno RE; Adams AC
    Cell Rep; 2015 May; 11(7):991-9. PubMed ID: 25956583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anti-obesity effect of FGF19 does not require UCP1-dependent thermogenesis.
    Antonellis PJ; Droz BA; Cosgrove R; O'Farrell LS; Coskun T; Perfield JW; Bauer S; Wade M; Chouinard TE; Brozinick JT; Adams AC; Samms RJ
    Mol Metab; 2019 Dec; 30():131-139. PubMed ID: 31767164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion.
    Keipert S; Kutschke M; Lamp D; Brachthäuser L; Neff F; Meyer CW; Oelkrug R; Kharitonenkov A; Jastroch M
    Mol Metab; 2015 Jul; 4(7):537-42. PubMed ID: 26137441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints.
    Hill CM; Laeger T; Albarado DC; McDougal DH; Berthoud HR; Münzberg H; Morrison CD
    Sci Rep; 2017 Aug; 7(1):8209. PubMed ID: 28811495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone morphogenic protein 9 is a novel thermogenic hepatokine secreted in response to cold exposure.
    Um JH; Park SY; Hur JH; Lee HY; Jeong KH; Cho Y; Lee SH; Yoon SM; Choe S; Choi CS
    Metabolism; 2022 Apr; 129():155139. PubMed ID: 35063533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice.
    Okamatsu-Ogura Y; Kuroda M; Tsutsumi R; Tsubota A; Saito M; Kimura K; Sakaue H
    Metabolism; 2020 Dec; 113():154396. PubMed ID: 33065161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold acclimation enhances UCP1 content, lipolysis, and triacylglycerol resynthesis, but not mitochondrial uncoupling and fat oxidation, in rat white adipocytes.
    Sepa-Kishi DM; Jani S; Da Eira D; Ceddia RB
    Am J Physiol Cell Physiol; 2019 Mar; 316(3):C365-C376. PubMed ID: 30624981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice.
    Tanimura R; Kobayashi L; Shirai T; Takemasa T
    Physiol Rep; 2022 Mar; 10(5):e15205. PubMed ID: 35286020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice.
    Keipert S; Lutter D; Schroeder BO; Brandt D; Ståhlman M; Schwarzmayr T; Graf E; Fuchs H; de Angelis MH; Tschöp MH; Rozman J; Jastroch M
    Nat Commun; 2020 Jan; 11(1):624. PubMed ID: 32005798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis.
    Fisher FM; Kleiner S; Douris N; Fox EC; Mepani RJ; Verdeguer F; Wu J; Kharitonenkov A; Flier JS; Maratos-Flier E; Spiegelman BM
    Genes Dev; 2012 Feb; 26(3):271-81. PubMed ID: 22302939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice.
    Labbé SM; Caron A; Festuccia WT; Lecomte R; Richard D
    Am J Physiol Endocrinol Metab; 2018 Nov; 315(5):E815-E824. PubMed ID: 30153064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD38 downregulation modulates NAD
    Benzi A; Sturla L; Heine M; Fischer AW; Spinelli S; Magnone M; Sociali G; Parodi A; Fenoglio D; Emionite L; Koch-Nolte F; Mittrücker HW; Guse AH; De Flora A; Zocchi E; Heeren J; Bruzzone S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jan; 1866(1):158819. PubMed ID: 33010451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.