These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28768415)

  • 1. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.
    Wenger WN; Bates FS; Aydil ES
    Langmuir; 2017 Aug; 33(33):8239-8245. PubMed ID: 28768415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of luminescence efficiency of cdse quantum dots on chemical environments.
    Jose R; Ishikawa M; Thavasi V; Baba Y; Ramakrishna S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5615-23. PubMed ID: 19198279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuated total reflection infrared studies of oleate and trioctylphosphine oxide ligand adsorption and exchange reactions on CdS quantum dot films.
    Young AG; Al-Salim N; Green DP; McQuillan AJ
    Langmuir; 2008 Apr; 24(8):3841-9. PubMed ID: 18312011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed field gradient NMR studies of polymer adsorption on colloidal CdSe quantum dots.
    Shen L; Soong R; Wang M; Lee A; Wu C; Scholes GD; Macdonald PM; Winnik MA
    J Phys Chem B; 2008 Feb; 112(6):1626-33. PubMed ID: 18201077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent photoluminescence spectroscopy as a tool to measure the ligand exchange kinetics on a quantum dot surface.
    Koole R; Schapotschnikow P; Donegá Cde M; Vlugt TJ; Meijerink A
    ACS Nano; 2008 Aug; 2(8):1703-14. PubMed ID: 19206375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three bisphosphonate ligands improve the water solubility of quantum dots.
    Abdul Ghani SF; Wright M; Paramo JG; Bottrill M; Green M; Long N; Thanou M
    Faraday Discuss; 2014; 175():153-69. PubMed ID: 25318058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid).
    Lin W; Fritz K; Guerin G; Bardajee GR; Hinds S; Sukhovatkin V; Sargent EH; Scholes GD; Winnik MA
    Langmuir; 2008 Aug; 24(15):8215-9. PubMed ID: 18597501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of poly(ethylene glycol)-graft-chitosan and using as ligand for fabrication of water-soluble quantum dots.
    Jiang Z; Zhao C; Liu X
    Colloids Surf B Biointerfaces; 2014 Mar; 115():260-6. PubMed ID: 24370850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photophysical properties of biologically compatible CdSe quantum dot structures.
    Kloepfer JA; Bradforth SE; Nadeau JL
    J Phys Chem B; 2005 May; 109(20):9996-10003. PubMed ID: 16852208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR study of the surface-ligand exchange reaction with glutathione on biocompatible rod-shaped CdSe/CdS semiconductor nanocrystals.
    Kuroi K; Yamada M; Kawamura I; Jung M; Pack CG; Fujii F
    Phys Chem Chem Phys; 2022 Jun; 24(21):13356-13364. PubMed ID: 35608135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redesign of hydrophobic quantum dots mitigates ligand-dependent toxicity in the nematode C. elegans.
    Niemuth N; Williams DN; Mensch AC; Cui Y; Orr G; Rosenzweig Z; Klaper RD
    NanoImpact; 2021 Apr; 22():100318. PubMed ID: 35559975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilized Perovskite Quantum Dot Solids via Nonpolar Solvent Dispersible Covalent Ligands.
    Han S; Seo G; Yong T; Choi S; Kim Y; Choi J
    Adv Sci (Weinh); 2023 Aug; 10(23):e2301793. PubMed ID: 37271856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Photon Photochemistry of CdSe Quantum Dots.
    Zeng Y; Kelley DF
    ACS Nano; 2015 Oct; 9(10):10471-81. PubMed ID: 26372423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on coating CdSe nanocrystals with surfactants.
    Oszwałdowski S; Roberts KP
    Mikrochim Acta; 2013; 180(13):1341-1350. PubMed ID: 24078747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: a procedure guided by computational studies.
    Pong BK; Trout BL; Lee JY
    Langmuir; 2008 May; 24(10):5270-6. PubMed ID: 18412382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols.
    Yildiz I; McCaughan B; Cruickshank SF; Callan JF; Raymo FM
    Langmuir; 2009 Jun; 25(12):7090-6. PubMed ID: 19239226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of chemisorption on the luminescence of CdSe quantum dots.
    Bullen C; Mulvaney P
    Langmuir; 2006 Mar; 22(7):3007-13. PubMed ID: 16548550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.