BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28768519)

  • 1. Synthetic hematocrit derived from the longitudinal relaxation of blood can lead to clinically significant errors in measurement of extracellular volume fraction in pediatric and young adult patients.
    Raucci FJ; Parra DA; Christensen JT; Hernandez LE; Markham LW; Xu M; Slaughter JC; Soslow JH
    J Cardiovasc Magn Reson; 2017 Aug; 19(1):58. PubMed ID: 28768519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume.
    Miller CA; Naish JH; Bishop P; Coutts G; Clark D; Zhao S; Ray SG; Yonan N; Williams SG; Flett AS; Moon JC; Greiser A; Parker GJ; Schmitt M
    Circ Cardiovasc Imaging; 2013 May; 6(3):373-83. PubMed ID: 23553570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Measurement of the Myocardial Interstitium: Synthetic Extracellular Volume Quantification Without Hematocrit Sampling.
    Treibel TA; Fontana M; Maestrini V; Castelletti S; Rosmini S; Simpson J; Nasis A; Bhuva AN; Bulluck H; Abdel-Gadir A; White SK; Manisty C; Spottiswoode BS; Wong TC; Piechnik SK; Kellman P; Robson MD; Schelbert EB; Moon JC
    JACC Cardiovasc Imaging; 2016 Jan; 9(1):54-63. PubMed ID: 26762875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CMR-derived extracellular volume fraction (ECV) in asymptomatic heart transplant recipients: correlations with clinical features and myocardial edema.
    Yuan Y; Cai J; Cui Y; Wang J; Alwalid O; Shen X; Cao Y; Zou Y; Liang B
    Int J Cardiovasc Imaging; 2018 Dec; 34(12):1959-1967. PubMed ID: 30056496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular volume fraction measurements derived from the longitudinal relaxation of blood-based synthetic hematocrit may lead to clinical errors in 3 T cardiovascular magnetic resonance.
    Shang Y; Zhang X; Zhou X; Wang J
    J Cardiovasc Magn Reson; 2018 Aug; 20(1):56. PubMed ID: 30089499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T
    Maforo NG; Magrath P; Moulin K; Shao J; Kim GH; Prosper A; Renella P; Wu HH; Halnon N; Ennis DB
    J Cardiovasc Magn Reson; 2020 Dec; 22(1):85. PubMed ID: 33302967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Volume Associates With Outcomes More Strongly Than Native or Post-Contrast Myocardial T1.
    Treibel TA; Fridman Y; Bering P; Sayeed A; Maanja M; Frojdh F; Niklasson L; Olausson E; Wong TC; Kellman P; Miller CA; Moon JC; Ugander M; Schelbert EB
    JACC Cardiovasc Imaging; 2020 Jan; 13(1 Pt 1):44-54. PubMed ID: 31103587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is a timely assessment of the hematocrit necessary for cardiovascular magnetic resonance-derived extracellular volume measurements?
    Su MY; Huang YS; Niisato E; Chow K; Juang JJ; Wu CK; Yu HY; Lin LY; Yang SC; Chang YC
    J Cardiovasc Magn Reson; 2020 Nov; 22(1):77. PubMed ID: 33250055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time cardiovascular magnetic resonance T1 and extracellular volume fraction mapping for tissue characterisation in aortic stenosis.
    Backhaus SJ; Lange T; Beuthner BE; Topci R; Wang X; Kowallick JT; Lotz J; Seidler T; Toischer K; Zeisberg EM; Puls M; Jacobshagen C; Uecker M; Hasenfuß G; Schuster A
    J Cardiovasc Magn Reson; 2020 Jun; 22(1):46. PubMed ID: 32564773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of standardizing timing of hematocrit measurement when using cardiovascular magnetic resonance to calculate myocardial extracellular volume (ECV) based on pre- and post-contrast T1 mapping.
    Engblom H; Kanski M; Kopic S; Nordlund D; Xanthis CG; Jablonowski R; Heiberg E; Aletras AH; Carlsson M; Arheden H
    J Cardiovasc Magn Reson; 2018 Jun; 20(1):46. PubMed ID: 29950178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA.
    Kawel N; Nacif M; Zavodni A; Jones J; Liu S; Sibley CT; Bluemke DA
    J Cardiovasc Magn Reson; 2012 Apr; 14(1):26. PubMed ID: 22540153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular magnetic resonance evidence of myocardial fibrosis and its clinical significance in adolescent and adult patients with Ebstein's anomaly.
    Yang D; Li X; Sun JY; Cheng W; Greiser A; Zhang TJ; Liu H; Wan K; Luo Y; An Q; Chung YC; Han Y; Chen YC
    J Cardiovasc Magn Reson; 2018 Sep; 20(1):69. PubMed ID: 30257686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular volume quantification by cardiac magnetic resonance imaging without hematocrit sampling : Ready for prime time?
    Kammerlander AA; Duca F; Binder C; Aschauer S; Zotter-Tufaro C; Koschutnik M; Marzluf BA; Bonderman D; Mascherbauer J
    Wien Klin Wochenschr; 2018 Mar; 130(5-6):190-196. PubMed ID: 28980127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique.
    White SK; Sado DM; Fontana M; Banypersad SM; Maestrini V; Flett AS; Piechnik SK; Robson MD; Hausenloy DJ; Sheikh AM; Hawkins PN; Moon JC
    JACC Cardiovasc Imaging; 2013 Sep; 6(9):955-62. PubMed ID: 23582361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing CMR Mapping Methods and Myocardial Patterns Toward Heart Failure Outcomes in Nonischemic Dilated Cardiomyopathy.
    Vita T; Gräni C; Abbasi SA; Neilan TG; Rowin E; Kaneko K; Coelho-Filho O; Watanabe E; Mongeon FP; Farhad H; Rassi CH; Choi YL; Cheng K; Givertz MM; Blankstein R; Steigner M; Aghayev A; Jerosch-Herold M; Kwong RY
    JACC Cardiovasc Imaging; 2019 Aug; 12(8 Pt 2):1659-1669. PubMed ID: 30448130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Synthetic Extracellular Volume Fraction in Different Cardiac Phenotypes From a Prospective Cohort of Patients Referred for Cardiac Magnetic Resonance.
    Censi S; Cimaglia P; Barbieri A; Naldi M; Ruggerini S; Brogneri S; Tonet E; Rapezzi C; Squeri A
    J Magn Reson Imaging; 2021 Aug; 54(2):429-439. PubMed ID: 33590584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of elevated right ventricular extracellular volume in pulmonary hypertension using Accelerated and Navigator-Gated Look-Locker Imaging for Cardiac T1 Estimation (ANGIE) cardiovascular magnetic resonance.
    Mehta BB; Auger DA; Gonzalez JA; Workman V; Chen X; Chow K; Stump CJ; Mazimba S; Kennedy JL; Gay E; Salerno M; Kramer CM; Epstein FH; Bilchick KC
    J Cardiovasc Magn Reson; 2015 Dec; 17():110. PubMed ID: 26692265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients.
    Ide S; Riesenkampff E; Chiasson DA; Dipchand AI; Kantor PF; Chaturvedi RR; Yoo SJ; Grosse-Wortmann L
    J Cardiovasc Magn Reson; 2017 Feb; 19(1):10. PubMed ID: 28143545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial ECV Fraction Assessed by CMR Is Associated With Type of Hemodynamic Load and Arrhythmia in Repaired Tetralogy of Fallot.
    Chen CA; Dusenbery SM; Valente AM; Powell AJ; Geva T
    JACC Cardiovasc Imaging; 2016 Jan; 9(1):1-10. PubMed ID: 26684969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy.
    Soslow JH; Damon SM; Crum K; Lawson MA; Slaughter JC; Xu M; Arai AE; Sawyer DB; Parra DA; Damon BM; Markham LW
    J Cardiovasc Magn Reson; 2016 Jan; 18():5. PubMed ID: 26795569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.