These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 28768737)
1. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction. Russo M; Cesqui B; La Scaleia B; Ceccarelli F; Maselli A; Moscatelli A; Zago M; Lacquaniti F; d'Avella A J Neurophysiol; 2017 Oct; 118(4):2421-2434. PubMed ID: 28768737 [TBL] [Abstract][Full Text] [Related]
2. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues. Senot P; Zago M; Lacquaniti F; McIntyre J J Neurophysiol; 2005 Dec; 94(6):4471-80. PubMed ID: 16120661 [TBL] [Abstract][Full Text] [Related]
3. Body orientation contributes to modelling the effects of gravity for target interception in humans. La Scaleia B; Lacquaniti F; Zago M J Physiol; 2019 Apr; 597(7):2021-2043. PubMed ID: 30644996 [TBL] [Abstract][Full Text] [Related]
4. Extrapolation of vertical target motion through a brief visual occlusion. Zago M; Iosa M; Maffei V; Lacquaniti F Exp Brain Res; 2010 Mar; 201(3):365-84. PubMed ID: 19882150 [TBL] [Abstract][Full Text] [Related]
5. Mental imagery of gravitational motion. Gravano S; Zago M; Lacquaniti F Cortex; 2017 Oct; 95():172-191. PubMed ID: 28910670 [TBL] [Abstract][Full Text] [Related]
6. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study. Maffei V; Macaluso E; Indovina I; Orban G; Lacquaniti F J Neurophysiol; 2010 Jan; 103(1):360-70. PubMed ID: 19889846 [TBL] [Abstract][Full Text] [Related]
7. Interception of vertically approaching objects: temporal recruitment of the internal model of gravity and contribution of optical information. Delle Monache S; Paolocci G; Scalici F; Conti A; Lacquaniti F; Indovina I; Bosco G Front Physiol; 2023; 14():1266332. PubMed ID: 38046950 [No Abstract] [Full Text] [Related]
8. Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning. Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F J Neurophysiol; 2005 Feb; 93(2):1055-68. PubMed ID: 15456796 [TBL] [Abstract][Full Text] [Related]
9. Prospective versus predictive control in timing of hitting a falling ball. Katsumata H; Russell DM Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106 [TBL] [Abstract][Full Text] [Related]
10. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity. La Scaleia B; Ceccarelli F; Lacquaniti F; Zago M Front Bioeng Biotechnol; 2020; 8():76. PubMed ID: 32133351 [TBL] [Abstract][Full Text] [Related]
11. Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions. Zago M; La Scaleia B; Miller WL; Lacquaniti F J Vis; 2011 Sep; 11(10):13. PubMed ID: 21933933 [TBL] [Abstract][Full Text] [Related]
12. The information for catching fly balls: judging and intercepting virtual balls in a CAVE. Zaal FT; Michaels CF J Exp Psychol Hum Percept Perform; 2003 Jun; 29(3):537-55. PubMed ID: 12848325 [TBL] [Abstract][Full Text] [Related]
13. Gravity in the Brain as a Reference for Space and Time Perception. Lacquaniti F; Bosco G; Gravano S; Indovina I; La Scaleia B; Maffei V; Zago M Multisens Res; 2015; 28(5-6):397-426. PubMed ID: 26595949 [TBL] [Abstract][Full Text] [Related]
14. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5+, and the intraparietal cortex. Delle Monache S; Lacquaniti F; Bosco G J Neurophysiol; 2017 Sep; 118(3):1809-1823. PubMed ID: 28701531 [TBL] [Abstract][Full Text] [Related]
15. Catching what we can't see: manual interception of occluded fly-ball trajectories. Bosco G; Delle Monache S; Lacquaniti F PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653 [TBL] [Abstract][Full Text] [Related]
16. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task. Iversen IH; Matsuzawa T Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656 [TBL] [Abstract][Full Text] [Related]
17. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients. Maffei V; Mazzarella E; Piras F; Spalletta G; Caltagirone C; Lacquaniti F; Daprati E Cortex; 2016 May; 78():55-69. PubMed ID: 27007069 [TBL] [Abstract][Full Text] [Related]
18. Neural prediction of complex accelerations for object interception. de Rugy A; Marinovic W; Wallis G J Neurophysiol; 2012 Feb; 107(3):766-71. PubMed ID: 22090456 [TBL] [Abstract][Full Text] [Related]
19. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663 [TBL] [Abstract][Full Text] [Related]
20. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth. Zago M; Lacquaniti F J Neurophysiol; 2005 Aug; 94(2):1346-57. PubMed ID: 15817649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]