These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28769034)

  • 1. Prediction of thermal boundary resistance by the machine learning method.
    Zhan T; Fang L; Xu Y
    Sci Rep; 2017 Aug; 7(1):7109. PubMed ID: 28769034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal boundary resistance at graphene-pentacene interface explored by a data-intensive approach.
    Wang X; Fan H; Han D; Hong Y; Zhang J
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33596554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Thermal Boundary Resistance between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI.
    Zhan T; Oda K; Ma S; Tomita M; Jin Z; Takezawa H; Mesaki K; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22347-22356. PubMed ID: 32315529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descriptor selection for predicting interfacial thermal resistance by machine learning methods.
    Tian X; Chen M
    Sci Rep; 2021 Jan; 11(1):739. PubMed ID: 33436976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures.
    Samvedi V; Tomar V
    Nanotechnology; 2009 Sep; 20(36):365701. PubMed ID: 19687536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A data driven approach to model thermal boundary resistance from molecular dynamics simulations.
    Anandakrishnan A; Sathian SP
    Phys Chem Chem Phys; 2023 Jan; 25(4):3258-3269. PubMed ID: 36625720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.
    Zhang X; Cui J; Zhang K; Wu J; Lee Y
    J Chem Inf Model; 2019 Nov; 59(11):4636-4644. PubMed ID: 31661958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine.
    Wang J; Du H; Liu H; Yao X; Hu Z; Fan B
    Talanta; 2007 Aug; 73(1):147-56. PubMed ID: 19071862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Thermal Conductivity Prediction Using Symbolic Regression and Machine Learning.
    Loftis C; Yuan K; Zhao Y; Hu M; Hu J
    J Phys Chem A; 2021 Jan; 125(1):435-450. PubMed ID: 33355459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Thermal Boundary Resistance in Metal/Dielectric Thermally Conductive Layers on Power Generation of Silicon Nanowire Microthermoelectric Generators.
    Zhan T; Ma S; Jin Z; Takezawa H; Mesaki K; Tomita M; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34441-34450. PubMed ID: 32635712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 13. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving autocoding performance of rare categories in injury classification: Is more training data or filtering the solution?
    Nanda G; Vallmuur K; Lehto M
    Accid Anal Prev; 2018 Jan; 110():115-127. PubMed ID: 29127808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials.
    Wan Z; Wang QD; Liu D; Liang J
    Phys Chem Chem Phys; 2021 Jul; 23(29):15675-15684. PubMed ID: 34269780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems.
    Tao L; Theruvakkattil Sreenivasan S; Shahsavari R
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):989-998. PubMed ID: 28073276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel descriptor based on atom-pair properties.
    Kuroda M
    J Cheminform; 2017; 9():1. PubMed ID: 28316652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-phonon interaction and thermal boundary resistance at the interfaces of Ge2Sb2Te5 with metals and dielectrics.
    Campi D; Baldi E; Graceffa G; Sosso GC; Bernasconi M
    J Phys Condens Matter; 2015 May; 27(17):175009. PubMed ID: 25873568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.