These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28769093)
1. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing. Bordeenithikasem P; Liu J; Kube SA; Li Y; Ma T; Scanley BE; Broadbridge CC; Vlassak JJ; Singer JP; Schroers J Sci Rep; 2017 Aug; 7(1):7155. PubMed ID: 28769093 [TBL] [Abstract][Full Text] [Related]
2. Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Yang L; Guo GQ; Chen LY; Huang CL; Ge T; Chen D; Liaw PK; Saksl K; Ren Y; Zeng QS; LaQua B; Chen FG; Jiang JZ Phys Rev Lett; 2012 Sep; 109(10):105502. PubMed ID: 23005298 [TBL] [Abstract][Full Text] [Related]
3. Author Correction: Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing. Bordeenithikasem P; Liu J; Kube SA; Li Y; Ma T; Scanley BE; Broadbridge CC; Vlassak JJ; Singer JP; Schroers J Sci Rep; 2018 Dec; 8(1):17898. PubMed ID: 30538256 [TBL] [Abstract][Full Text] [Related]
4. Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses. Wen T; Yao W; Wang N Sci Rep; 2017 Oct; 7(1):13164. PubMed ID: 29030595 [TBL] [Abstract][Full Text] [Related]
5. Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory. Sato Y; Nakai C; Wakeda M; Ogata S Sci Rep; 2017 Aug; 7(1):7194. PubMed ID: 28775268 [TBL] [Abstract][Full Text] [Related]
6. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses. Zhang K; Fan M; Liu Y; Schroers J; Shattuck MD; O'Hern CS J Chem Phys; 2015 Nov; 143(18):184502. PubMed ID: 26567672 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys. Liu N; Ma T; Liao C; Liu G; Mota RMO; Liu J; Sohn S; Kube S; Zhao S; Singer JP; Schroers J Sci Rep; 2021 Feb; 11(1):3903. PubMed ID: 33594154 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric crystallization during cooling and heating in model glass-forming systems. Wang M; Zhang K; Li Z; Liu Y; Schroers J; Shattuck MD; O'Hern CS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032309. PubMed ID: 25871112 [TBL] [Abstract][Full Text] [Related]
9. On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing. Zhang K; Dice B; Liu Y; Schroers J; Shattuck MD; O'Hern CS J Chem Phys; 2015 Aug; 143(5):054501. PubMed ID: 26254655 [TBL] [Abstract][Full Text] [Related]
10. Combinatorial development of bulk metallic glasses. Ding S; Liu Y; Li Y; Liu Z; Sohn S; Walker FJ; Schroers J Nat Mater; 2014 May; 13(5):494-500. PubMed ID: 24728462 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges. Li Y; Jensen KE; Liu Y; Liu J; Gong P; Scanley BE; Broadbridge CC; Schroers J ACS Comb Sci; 2016 Oct; 18(10):630-637. PubMed ID: 27557440 [TBL] [Abstract][Full Text] [Related]
12. Data-driven machine learning prediction of glass transition temperature and the glass-forming ability of metallic glasses. Zhang J; Zhao M; Zhong C; Liu J; Hu K; Lin X Nanoscale; 2023 Nov; 15(45):18511-18522. PubMed ID: 37946543 [TBL] [Abstract][Full Text] [Related]
13. First-principles prediction and experimental verification of glass-forming ability in Zr-Cu binary metallic glasses. Yu CY; Liu XJ; Lu J; Zheng GP; Liu CT Sci Rep; 2013; 3():2124. PubMed ID: 23821016 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulation of minor Zr addition on short and medium-range orders of Cu-Zr metallic glass. Cao X; Sun M J Mol Model; 2022 Sep; 28(10):324. PubMed ID: 36129553 [TBL] [Abstract][Full Text] [Related]
15. Computational studies of the glass-forming ability of model bulk metallic glasses. Zhang K; Wang M; Papanikolaou S; Liu Y; Schroers J; Shattuck MD; O'Hern CS J Chem Phys; 2013 Sep; 139(12):124503. PubMed ID: 24089782 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability. Sun YT; Bai HY; Li MZ; Wang WH J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303 [TBL] [Abstract][Full Text] [Related]
17. Metallic glass nanostructures of tunable shape and composition. Liu Y; Liu J; Sohn S; Li Y; Cha JJ; Schroers J Nat Commun; 2015 Apr; 6():7043. PubMed ID: 25901951 [TBL] [Abstract][Full Text] [Related]
18. Compositional dependence of the fragility in metallic glass forming liquids. Kube SA; Sohn S; Ojeda-Mota R; Evers T; Polsky W; Liu N; Ryan K; Rinehart S; Sun Y; Schroers J Nat Commun; 2022 Jun; 13(1):3708. PubMed ID: 35764635 [TBL] [Abstract][Full Text] [Related]
19. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses. Sedighi S; Kirk DW; Singh CV; Thorpe SJ J Chem Phys; 2015 Sep; 143(11):114509. PubMed ID: 26395721 [TBL] [Abstract][Full Text] [Related]
20. Data-driven discovery of a universal indicator for metallic glass forming ability. Li MX; Sun YT; Wang C; Hu LW; Sohn S; Schroers J; Wang WH; Liu YH Nat Mater; 2022 Feb; 21(2):165-172. PubMed ID: 34737454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]