These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 2876985)

  • 1. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage.
    Malis CD; Bonventre JV
    J Biol Chem; 1986 Oct; 261(30):14201-8. PubMed ID: 2876985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of marine lipids into mitochondrial membranes increases susceptibility to damage by calcium and reactive oxygen species: evidence for enhanced activation of phospholipase A2 in mitochondria enriched with n-3 fatty acids.
    Malis CD; Weber PC; Leaf A; Bonventre JV
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8845-9. PubMed ID: 2123344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of mitochondrial membranes to calcium and reactive oxygen species: implications for ischemic and toxic tissue damage.
    Malis CD; Bonventre JV
    Prog Clin Biol Res; 1988; 282():235-59. PubMed ID: 3071798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of superoxide generation on rat heart mitochondrial pyruvate utilization.
    Guarnieri C; Muscari C; Ceconi C; Flamigni F; Caldarera CM
    J Mol Cell Cardiol; 1983 Dec; 15(12):859-62. PubMed ID: 6319722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM; Humes HD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative roles of Ca(2+) -independent phospholipase A2 in respiratory chain-associated ROS production in brain mitochondria: influence of docosahexaenoic acid and bromoenol lactone.
    Nordmann C; Strokin M; Schönfeld P; Reiser G
    J Neurochem; 2014 Oct; 131(2):163-76. PubMed ID: 24923354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediation of sarcoplasmic reticulum disruption in the ischemic myocardium: proposed mechanism by the interaction of hydrogen ions and oxygen free radicals.
    Hess ML; Krause S; Kontos HA
    Adv Exp Med Biol; 1983; 161():377-89. PubMed ID: 6307008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-[(1 and 2)-phenyl-2-hydroxyethyl]cysteine-induced alterations in renal mitochondrial function in male Fischer-344 rats.
    Chakrabarti SK; Denniel C; Malick MA; Bai C
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):123-34. PubMed ID: 9705895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues.
    Turrens JF; Beconi M; Barilla J; Chavez UB; McCord JM
    Free Radic Res Commun; 1991; 12-13 Pt 2():681-9. PubMed ID: 2060840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of methyl methacrylate on mitochondrial function and structure.
    Bereznowski Z
    Int J Biochem; 1994 Sep; 26(9):1119-27. PubMed ID: 7988736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential role of mitochondrial calcium metabolism during reperfusion injury.
    Vlessis AA; Mela-Riker L
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1196-206. PubMed ID: 2735395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation.
    Schulze-Osthoff K; Bakker AC; Vanhaesebroeck B; Beyaert R; Jacob WA; Fiers W
    J Biol Chem; 1992 Mar; 267(8):5317-23. PubMed ID: 1312087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.
    Takeyama N; Matsuo N; Tanaka T
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):719-25. PubMed ID: 7691056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia.
    Arnold PE; Van Putten VJ; Lumlertgul D; Burke TJ; Schrier RW
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F357-63. PubMed ID: 3946611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration.
    Dykens JA
    J Neurochem; 1994 Aug; 63(2):584-91. PubMed ID: 8035183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs.
    Sugiyama Y; Fujita T; Matsumoto M; Okamoto K; Imada I
    J Pharmacobiodyn; 1985 Dec; 8(12):1006-17. PubMed ID: 2871147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium enhances in vitro free radical-induced damage to brain synaptosomes, mitochondria, and cultured spinal cord neurons.
    Braughler JM; Duncan LA; Goodman T
    J Neurochem; 1985 Oct; 45(4):1288-93. PubMed ID: 2993523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals.
    Hillered L; Ernster L
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):207-14. PubMed ID: 6841468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.