BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 28769871)

  • 1. The Role of MicroRNAs in Aβ Deposition and Tau Phosphorylation in Alzheimer's Disease.
    Zhao J; Yue D; Zhou Y; Jia L; Wang H; Guo M; Xu H; Chen C; Zhang J; Xu L
    Front Neurol; 2017; 8():342. PubMed ID: 28769871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal Predictive Relationships between Amyloid and Tau Biomarkers in Alzheimer's Disease Progression: An Empirical Model.
    Krance SH; Cogo-Moreira H; Rabin JS; Black SE; Swardfager W;
    J Neurosci; 2019 Sep; 39(37):7428-7437. PubMed ID: 31350262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key Peptides and Proteins in Alzheimer's Disease.
    Penke B; Bogár F; Paragi G; Gera J; Fülöp L
    Curr Protein Pept Sci; 2019; 20(6):577-599. PubMed ID: 30605056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms.
    Dehghani R; Rahmani F; Rezaei N
    Rev Neurosci; 2018 Feb; 29(2):161-182. PubMed ID: 28941357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of O-GlcNAcylation on amyloid-β precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer's disease.
    Zheng BW; Yang L; Dai XL; Jiang ZF; Huang HC
    Neurol Res; 2016 Feb; 38(2):177-86. PubMed ID: 27078700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease.
    Reddy PH; Oliver DM
    Cells; 2019 May; 8(5):. PubMed ID: 31121890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer's disease and track disease progression and cognitive decline.
    Koss DJ; Jones G; Cranston A; Gardner H; Kanaan NM; Platt B
    Acta Neuropathol; 2016 Dec; 132(6):875-895. PubMed ID: 27770234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid Beta and MicroRNAs in Alzheimer's Disease.
    Amakiri N; Kubosumi A; Tran J; Reddy PH
    Front Neurosci; 2019; 13():430. PubMed ID: 31130840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Untangling amyloid-β, tau, and metals in Alzheimer's disease.
    Savelieff MG; Lee S; Liu Y; Lim MH
    ACS Chem Biol; 2013 May; 8(5):856-65. PubMed ID: 23506614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep in Alzheimer's Disease - Beyond Amyloid.
    Holth J; Patel T; Holtzman DM
    Neurobiol Sleep Circadian Rhythms; 2017 Jan; 2():4-14. PubMed ID: 28217760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease.
    Tapia-Rojas C; Inestrosa NC
    Neural Regen Res; 2018 Oct; 13(10):1705-1710. PubMed ID: 30136680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-219-5p inhibits tau phosphorylation by targeting TTBK1 and GSK-3β in Alzheimer's disease.
    Li J; Chen W; Yi Y; Tong Q
    J Cell Biochem; 2019 Jun; 120(6):9936-9946. PubMed ID: 30556160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [β Amyloid Hypothesis in Alzheimer's Disease:Pathogenesis,Prevention,and Management].
    Zhang H; Zheng Y
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2019 Oct; 41(5):702-708. PubMed ID: 31699204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the superoxide dismutase/catalase mimetic EUK-207 in a mouse model of Alzheimer's disease: protection against and interruption of progression of amyloid and tau pathology and cognitive decline.
    Clausen A; Xu X; Bi X; Baudry M
    J Alzheimers Dis; 2012; 30(1):183-208. PubMed ID: 22406441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subthreshold Amyloid Predicts Tau Deposition in Aging.
    Leal SL; Lockhart SN; Maass A; Bell RK; Jagust WJ
    J Neurosci; 2018 May; 38(19):4482-4489. PubMed ID: 29686045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: Studies in a transgenic mouse model of Alzheimer's disease.
    Li HQ; Ip SP; Yuan QJ; Zheng GQ; Tsim KKW; Dong TTX; Lin G; Han Y; Liu Y; Xian YF; Lin ZX
    Brain Behav Immun; 2019 Nov; 82():264-278. PubMed ID: 31476414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice.
    Tapia-Rojas C; Inestrosa NC
    J Neurochem; 2018 Feb; 144(4):443-465. PubMed ID: 29240990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics.
    Kim DK; Park J; Han D; Yang J; Kim A; Woo J; Kim Y; Mook-Jung I
    Mol Neurodegener; 2018 Jan; 13(1):2. PubMed ID: 29338754
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.