BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28769949)

  • 1. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in
    Tao Y; Mace ES; Tai S; Cruickshank A; Campbell BC; Zhao X; Van Oosterom EJ; Godwin ID; Botella JR; Jordan DR
    Front Plant Sci; 2017; 8():1237. PubMed ID: 28769949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum.
    Lai X; Yan L; Lu Y; Schnable JC
    Plant J; 2018 Mar; 93(5):843-855. PubMed ID: 29265526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae).
    Zhang D; Li J; Compton RO; Robertson J; Goff VH; Epps E; Kong W; Kim C; Paterson AH
    G3 (Bethesda); 2015 Mar; 5(6):1117-28. PubMed ID: 25834216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resequencing 200 Flax Cultivated Accessions Identifies Candidate Genes Related to Seed Size and Weight and Reveals Signatures of Artificial Selection.
    Guo D; Jiang H; Yan W; Yang L; Ye J; Wang Y; Yan Q; Chen J; Gao Y; Duan L; Liu H; Xie L
    Front Plant Sci; 2019; 10():1682. PubMed ID: 32010166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in
    Massel K; Campbell BC; Mace ES; Tai S; Tao Y; Worland BG; Jordan DR; Botella JR; Godwin ID
    Front Plant Sci; 2016; 7():1544. PubMed ID: 27826302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic signatures of seed mass adaptation to global precipitation gradients in sorghum.
    Wang J; Hu Z; Upadhyaya HD; Morris GP
    Heredity (Edinb); 2020 Jan; 124(1):108-121. PubMed ID: 31316156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy.
    Campbell BC; Gilding EK; Mace ES; Tai S; Tao Y; Prentis PJ; Thomelin P; Jordan DR; Godwin ID
    Plant Biotechnol J; 2016 Dec; 14(12):2240-2253. PubMed ID: 27155090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera.
    Li Y; Zhu FL; Zheng XW; Hu ML; Dong C; Diao Y; Wang YW; Xie KQ; Hu ZL
    BMC Genomics; 2020 Feb; 21(1):146. PubMed ID: 32046648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic architecture and molecular regulation of sorghum domestication.
    Ge F; Xie P; Wu Y; Xie Q
    aBIOTECH; 2023 Mar; 4(1):57-71. PubMed ID: 37220542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Grain Weight Loci Revealed in a Cross between Cultivated and Wild Sorghum.
    Tao Y; Mace E; George-Jaeggli B; Hunt C; Cruickshank A; Henzell R; Jordan D
    Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Road to Sorghum Domestication: Evidence From Nucleotide Diversity and Gene Expression Patterns.
    Burgarella C; Berger A; Glémin S; David J; Terrier N; Deu M; Pot D
    Front Plant Sci; 2021; 12():666075. PubMed ID: 34527004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic footprints of sorghum domestication and breeding selection for multiple end uses.
    Wu X; Liu Y; Luo H; Shang L; Leng C; Liu Z; Li Z; Lu X; Cai H; Hao H; Jing HC
    Mol Plant; 2022 Mar; 15(3):537-551. PubMed ID: 34999019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How did the domestication of Fertile Crescent grain crops increase their yields?
    Preece C; Livarda A; Christin PA; Wallace M; Martin G; Charles M; Jones G; Rees M; Osborne CP
    Funct Ecol; 2017 Feb; 31(2):387-397. PubMed ID: 28286354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate genes and signatures of directional selection on fruit quality traits during apple domestication.
    Wedger MJ; Schumann AC; Gross BL
    Am J Bot; 2021 Apr; 108(4):616-627. PubMed ID: 33837962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of low frequency variants masks patterns of non-neutral evolution following domestication.
    Frère CH; Prentis PJ; Gilding EK; Mudge AM; Cruickshank A; Godwin ID
    PLoS One; 2011; 6(8):e23041. PubMed ID: 21853065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine mapping of qGW1, a major QTL for grain weight in sorghum.
    Han L; Chen J; Mace ES; Liu Y; Zhu M; Yuyama N; Jordan DR; Cai H
    Theor Appl Genet; 2015 Sep; 128(9):1813-25. PubMed ID: 26071275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel domestication of the Shattering1 genes in cereals.
    Lin Z; Li X; Shannon LM; Yeh CT; Wang ML; Bai G; Peng Z; Li J; Trick HN; Clemente TE; Doebley J; Schnable PS; Tuinstra MR; Tesso TT; White F; Yu J
    Nat Genet; 2012 May; 44(6):720-4. PubMed ID: 22581231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel Domestication of the Heading Date 1 Gene in Cereals.
    Liu H; Liu H; Zhou L; Zhang Z; Zhang X; Wang M; Li H; Lin Z
    Mol Biol Evol; 2015 Oct; 32(10):2726-37. PubMed ID: 26116860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A domestication history of dynamic adaptation and genomic deterioration in Sorghum.
    Smith O; Nicholson WV; Kistler L; Mace E; Clapham A; Rose P; Stevens C; Ware R; Samavedam S; Barker G; Jordan D; Fuller DQ; Allaby RG
    Nat Plants; 2019 Apr; 5(4):369-379. PubMed ID: 30962527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.