These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28770021)

  • 1. Effects of Antioxidant Supplements on the Survival and Differentiation of Stem Cells.
    Shaban S; El-Husseny MWA; Abushouk AI; Salem AMA; Mamdouh M; Abdel-Daim MM
    Oxid Med Cell Longev; 2017; 2017():5032102. PubMed ID: 28770021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells.
    Li TS; Marbán E
    Stem Cells; 2010 Jul; 28(7):1178-85. PubMed ID: 20506176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells.
    Cho YM; Kwon S; Pak YK; Seol HW; Choi YM; Park DJ; Park KS; Lee HK
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1472-8. PubMed ID: 16920071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for the detection of antioxidants which prevent age related diseases: a critical review with particular emphasis on human intervention studies.
    Hoelzl C; Bichler J; Ferk F; Simic T; Nersesyan A; Elbling L; Ehrlich V; Chakraborty A; Knasmüller S
    J Physiol Pharmacol; 2005 Mar; 56 Suppl 2():49-64. PubMed ID: 16077190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway.
    Fang H; Wu Y; Guo J; Rong J; Ma L; Zhao Z; Zuo D; Peng S
    Apoptosis; 2012 Aug; 17(8):895-907. PubMed ID: 22614820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.
    Sheshadri P; Kumar A
    Free Radic Res; 2016; 50(5):570-84. PubMed ID: 26899340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of reactive oxygen species in stem cells and cancer stem cells.
    Kobayashi CI; Suda T
    J Cell Physiol; 2012 Feb; 227(2):421-30. PubMed ID: 21448925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aeroallergens Induce Reactive Oxygen Species Production and DNA Damage and Dampen Antioxidant Responses in Bronchial Epithelial Cells.
    Chan TK; Tan WSD; Peh HY; Wong WSF
    J Immunol; 2017 Jul; 199(1):39-47. PubMed ID: 28526682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Glucose Attenuates Anesthetic Cardioprotection in Stem-Cell-Derived Cardiomyocytes: The Role of Reactive Oxygen Species and Mitochondrial Fission.
    Canfield SG; Zaja I; Godshaw B; Twaroski D; Bai X; Bosnjak ZJ
    Anesth Analg; 2016 May; 122(5):1269-79. PubMed ID: 26991754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sesamol inhibits UVB-induced ROS generation and subsequent oxidative damage in cultured human skin dermal fibroblasts.
    Ramachandran S; Rajendra Prasad N; Karthikeyan S
    Arch Dermatol Res; 2010 Dec; 302(10):733-44. PubMed ID: 20697726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants.
    Cui K; Luo X; Xu K; Ven Murthy MR
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Aug; 28(5):771-99. PubMed ID: 15363603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ROS-Generating Oxidase Nox3 Regulates the Self-Renewal of Mouse Spermatogonial Stem Cells.
    Morimoto H; Kanatsu-Shinohara M; Shinohara T
    Biol Reprod; 2015 Jun; 92(6):147. PubMed ID: 25947060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.
    Tian H; Gao Z; Wang G; Li H; Zheng J
    Tumour Biol; 2016 Jan; 37(1):141-50. PubMed ID: 26566628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells.
    Ramos-Ibeas P; Barandalla M; Colleoni S; Lazzari G
    Mol Cell Biochem; 2017 May; 429(1-2):137-150. PubMed ID: 28247212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation response of chemically derived mitochondrial DNA-deficient AG01522 human primary fibroblasts.
    Nieri D; Fioramonti M; Berardinelli F; Leone S; Cherubini R; De Nadal V; Gerardi S; Moreno S; Nardacci R; Tanzarella C; Antoccia A
    Mutat Res; 2013 Aug; 756(1-2):86-94. PubMed ID: 23721903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting proteomics in the discovery of drugs that target mitochondrial oxidative damage.
    Gibson BW
    Sci Aging Knowledge Environ; 2004 Mar; 2004(11):pe12. PubMed ID: 15028863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular transduction of TAT-Hsp27 fusion protein enhancing cell survival and regeneration capacity of cardiac stem cells in acute myocardial infarction.
    Kim HJ; Kim MH; Kim JT; Lee WJ; Kim E; Lim KS; Kim JK; Yang YI; Park KD; Kim YH
    J Control Release; 2015 Oct; 215():55-72. PubMed ID: 26232724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.