These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 28770356)
1. Radial MRI with variable echo times: reducing the orientation dependency of susceptibility artifacts of an MR-safe guidewire. Schleicher KE; Bock M; Düring K; Kroboth S; Krafft AJ MAGMA; 2018 Apr; 31(2):235-242. PubMed ID: 28770356 [TBL] [Abstract][Full Text] [Related]
2. Glass-Fiber-based MR-safe Guidewire for MR Imaging-guided Endovascular Interventions: In Vitro and Preclinical in Vivo Feasibility Study. Massmann A; Buecker A; Schneider GK Radiology; 2017 Aug; 284(2):541-551. PubMed ID: 28301310 [TBL] [Abstract][Full Text] [Related]
3. Real-time 3T MRI-guided cardiovascular catheterization in a porcine model using a glass-fiber epoxy-based guidewire. Li X; Perotti LE; Martinez JA; Duarte-Vogel SM; Ennis DB; Wu HH PLoS One; 2020; 15(2):e0229711. PubMed ID: 32102092 [TBL] [Abstract][Full Text] [Related]
4. Right heart catheterization using metallic guidewires and low SAR cardiovascular magnetic resonance fluoroscopy at 1.5 Tesla: first in human experience. Campbell-Washburn AE; Rogers T; Stine AM; Khan JM; Ramasawmy R; Schenke WH; McGuirt DR; Mazal JR; Grant LP; Grant EK; Herzka DA; Lederman RJ J Cardiovasc Magn Reson; 2018 Jun; 20(1):41. PubMed ID: 29925397 [TBL] [Abstract][Full Text] [Related]
5. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Krämer NA; Krüger S; Schmitz S; Linssen M; Schade H; Weiss S; Spüntrup E; Günther RW; Bücker A; Krombach GA Invest Radiol; 2009 Jul; 44(7):390-7. PubMed ID: 19465862 [TBL] [Abstract][Full Text] [Related]
6. In vitro assessment of needle artifacts with an interactive three-dimensional MR fluoroscopy system. Thomas C; Springer F; Röthke M; Rempp H; Clasen S; Fritz J; Claussen CD; Pereira PL J Vasc Interv Radiol; 2010 Mar; 21(3):375-80. PubMed ID: 20171560 [TBL] [Abstract][Full Text] [Related]
7. Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system. Basar B; Sonmez M; Yildirim DK; Paul R; Herzka DA; Kocaturk O; Lederman RJ; Campbell-Washburn AE Magn Reson Imaging; 2021 Apr; 77():14-20. PubMed ID: 33309924 [TBL] [Abstract][Full Text] [Related]
8. [Options for the reduction of magnetic susceptibility artifacts caused by implanted microchips in 0.5 Tesla magnetic resonance imaging]. Piesnack S; Oechtering G; Ludewig E Tierarztl Prax Ausg K Kleintiere Heimtiere; 2015; 43(2):83-92. PubMed ID: 25727725 [TBL] [Abstract][Full Text] [Related]
9. Needle Heating During Interventional Magnetic Resonance Imaging at 1.5- and 3.0-T Field Strengths. Khodarahmi I; Bonham LW; Weiss CR; Fritz J Invest Radiol; 2020 Jun; 55(6):396-404. PubMed ID: 32369319 [TBL] [Abstract][Full Text] [Related]
10. Optimised passive marker device visibility and automatic marker detection for 3-T MRI-guided endovascular interventions: a pulsatile flow phantom study. Nijsink H; Overduin CG; Brand P; De Jong SF; Borm PJA; Warlé MC; Fütterer JJ Eur Radiol Exp; 2022 Feb; 6(1):11. PubMed ID: 35199259 [TBL] [Abstract][Full Text] [Related]
11. [Comparison of susceptibility artifacts generated by microchips with different geometry at 1.5 Tesla magnet resonance imaging. A phantom pilot study referring to the ASTM standard test method F2119-07]. Dengg S; Kneissl S Tierarztl Prax Ausg K Kleintiere Heimtiere; 2013; 41(5):289-96. PubMed ID: 24127025 [TBL] [Abstract][Full Text] [Related]
12. Segmented nitinol guidewires with stiffness-matched connectors for cardiovascular magnetic resonance catheterization: preserved mechanical performance and freedom from heating. Basar B; Rogers T; Ratnayaka K; Campbell-Washburn AE; Mazal JR; Schenke WH; Sonmez M; Faranesh AZ; Lederman RJ; Kocaturk O J Cardiovasc Magn Reson; 2015 Nov; 17():105. PubMed ID: 26620420 [TBL] [Abstract][Full Text] [Related]
13. Safe guidewire visualization using the modes of a PTx transmit array MR system. Godinez F; Scott G; Padormo F; Hajnal JV; Malik SJ Magn Reson Med; 2020 Jun; 83(6):2343-2355. PubMed ID: 31722119 [TBL] [Abstract][Full Text] [Related]
14. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging. Eibofner F; Wojtczyk H; Graf H; Clasen S Med Phys; 2014 Jun; 41(6):062301. PubMed ID: 24877833 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images. Imai H; Tanaka Y; Nomura N; Tsutsumi Y; Doi H; Kanno Z; Ohno K; Ono T; Hanawa T Acta Biomater; 2013 Sep; 9(9):8433-9. PubMed ID: 23707948 [TBL] [Abstract][Full Text] [Related]
16. Design, construction and evaluation of an anthropomorphic head phantom with realistic susceptibility artifacts. Shmueli K; Thomas DL; Ordidge RJ J Magn Reson Imaging; 2007 Jul; 26(1):202-7. PubMed ID: 17659546 [TBL] [Abstract][Full Text] [Related]
17. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Gurney-Champion OJ; Lens E; van der Horst A; Houweling AC; Klaassen R; van Hooft JE; Stoker J; van Tienhoven G; Nederveen AJ; Bel A Med Phys; 2015 May; 42(5):2638-47. PubMed ID: 25979055 [TBL] [Abstract][Full Text] [Related]